Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An iterative multiple sampling method for intrusion detection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Threats to network security increase with growing volumes and velocity of data across networks, and they present challenges not only to law enforcement agencies, but to businesses, families and individuals. The volume, velocity and veracity of shared data across networks entail accurate and reliable automated tools for filtering out useful from malicious, noisy or irrelevant data. While data mining and machine learning techniques have widely been adopted within the network security community, challenges and gaps in knowledge extraction from data have remained due to insufficient data sources on attacks on which to test the algorithms accuracy and reliability. We propose a data-flow adaptive approach to intrusion detection based on high-dimensional cyber-attacks data. The algorithm repeatedly takes random samples from an inherently bi-modal, high-dimensional dataset of 82,332 observations on 25 numeric and two categorical variables. Its main idea is to capture subtle information resulting from reduced data dimension of a large number of malicious flows and by iteratively estimating roles played by individual variables in construction of key components. Data visualization and numerical results provide a clear separation of a set of variables associated with attack types and show that component-dominating parameters are crucial in monitoring future attacks. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Information Security Journal: A Global Perspective is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)