Item request has been placed!
×
Item request cannot be made.
×

Processing Request
PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: Oxford University Press Country of Publication: England NLM ID: 0411011 Publication Model: Print Cited Medium: Internet ISSN: 1362-4962 (Electronic) Linking ISSN: 03051048 NLM ISO Abbreviation: Nucleic Acids Res Subsets: MEDLINE
- Publication Information:
Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
- Subject Terms:
- Abstract:
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
(© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- References:
Mol Microbiol. 2006 Sep;61(5):1211-9. (PMID: 16925555)
Gene. 1989 Apr 15;77(1):61-8. (PMID: 2744488)
mSystems. 2020 Mar 17;5(2):. (PMID: 32184366)
Redox Biol. 2014 Jun 17;2:865-72. (PMID: 25009788)
Annu Rev Microbiol. 2003;57:395-418. (PMID: 14527285)
J Biol Chem. 2001 Aug 3;276(31):29515-9. (PMID: 11390404)
J Bacteriol. 2002 Jun;184(12):3276-86. (PMID: 12029044)
Environ Microbiol. 2008 Apr;10(4):893-905. (PMID: 18036179)
mBio. 2022 Aug 30;13(4):e0063322. (PMID: 35856564)
BMC Microbiol. 2013 Jul 16;13:163. (PMID: 23865844)
J Mol Biol. 2004 Jan 9;335(2):425-35. (PMID: 14672653)
Nucleic Acids Res. 1999 Dec 1;27(23):4658-70. (PMID: 10556324)
Toxicol Sci. 2006 Jun;91(2):382-92. (PMID: 16547075)
DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1123-32. (PMID: 15279801)
Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):472-6. (PMID: 7831313)
Nat Microbiol. 2022 Nov;7(11):1744-1755. (PMID: 36253512)
Free Radic Biol Med. 2008 Oct 15;45(8):1167-77. (PMID: 18708137)
Redox Biol. 2019 Jul;25:101084. (PMID: 30612957)
Mol Microbiol. 1998 Jul;29(1):189-98. (PMID: 9701813)
Redox Rep. 2000;5(5):287-93. (PMID: 11145103)
J Biol Chem. 2006 Aug 18;281(33):23567-78. (PMID: 16766519)
Biochim Biophys Acta. 2009 Jul;1790(7):589-99. (PMID: 18929623)
Mol Microbiol. 2010 Sep;77(5):1111-22. (PMID: 20598080)
Nucleic Acids Res. 2018 Jul 27;46(13):6697-6711. (PMID: 29878182)
PLoS One. 2014 Jan 20;9(1):e85625. (PMID: 24465625)
Metallomics. 2014 Dec;6(12):2230-41. (PMID: 25329367)
mSphere. 2021 Mar 3;6(2):. (PMID: 33658275)
Nucleic Acids Res. 2019 Aug 22;47(14):7592-7604. (PMID: 31131413)
Eur J Biochem. 2000 Jan;267(1):235-43. (PMID: 10601872)
Annu Rev Microbiol. 2005;59:357-77. (PMID: 16153173)
Appl Environ Microbiol. 2005 Dec;71(12):8314-22. (PMID: 16332818)
J Biol Inorg Chem. 2012 Aug;17(6):975-85. (PMID: 22739810)
Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1007-22. (PMID: 16754611)
Nat Protoc. 2008;3(6):1101-8. (PMID: 18546601)
FEBS J. 2006 Dec;273(23):5407-20. (PMID: 17076700)
J Bacteriol. 2001 Aug;183(15):4571-9. (PMID: 11443092)
Arch Biochem Biophys. 2021 Apr 15;701:108770. (PMID: 33524404)
J Bacteriol. 1999 Oct;181(20):6371-6. (PMID: 10515927)
Bioelectrochemistry. 2015 Dec;106(Pt B):276-89. (PMID: 26254844)
J Biol Chem. 2012 Nov 2;287(45):37703-12. (PMID: 22992749)
Nature. 2021 May;593(7860):553-557. (PMID: 33911286)
Mol Microbiol. 2005 Jan;55(1):221-34. (PMID: 15612930)
Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21. (PMID: 24854789)
Mol Microbiol. 2002 Aug;45(4):997-1005. (PMID: 12180919)
Antioxid Redox Signal. 2011 Jul 1;15(1):175-89. (PMID: 20977351)
J Biol Chem. 2009 Aug 28;284(35):23517-24. (PMID: 19586910)
FEBS J. 2008 May;275(9):2067-77. (PMID: 18355320)
Nature. 2006 Mar 16;440(7082):363-7. (PMID: 16541078)
J Bacteriol. 2000 Oct;182(19):5290-9. (PMID: 10986229)
Antioxid Redox Signal. 2018 Dec 20;29(18):1858-1871. (PMID: 28938859)
Mol Microbiol. 2009 Nov;74(4):928-39. (PMID: 19818017)
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1486-91. (PMID: 9990050)
J Biol Chem. 1996 Nov 1;271(44):27659-63. (PMID: 8910356)
Curr Opin Microbiol. 2011 Jun;14(3):350-6. (PMID: 21543251)
Curr Opin Microbiol. 2001 Apr;4(2):208-13. (PMID: 11282478)
Nucleic Acids Res. 2016 Feb 29;44(4):e34. (PMID: 26467477)
Appl Environ Microbiol. 2012 Aug;78(16):5630-7. (PMID: 22660711)
Nucleic Acids Res. 2023 Feb 28;51(4):1707-1723. (PMID: 36715325)
FEBS J. 2006 Feb;273(4):721-31. (PMID: 16441659)
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10551-6. (PMID: 16024730)
Extremophiles. 2009 Jul;13(4):735-46. (PMID: 19513584)
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E23-31. (PMID: 26677871)
Mol Microbiol. 2009 Jul;73(1):20-31. (PMID: 19508285)
Free Radic Biol Med. 2019 Aug 20;140:93-102. (PMID: 30930298)
Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7645-9. (PMID: 1502176)
Genes Cells. 2006 Apr;11(4):409-23. (PMID: 16611244)
FEMS Microbiol Rev. 2021 Aug 17;45(4):. (PMID: 33476388)
Mol Microbiol. 2002 Sep;45(6):1613-29. (PMID: 12354229)
Nat Rev Microbiol. 2013 Jul;11(7):443-54. (PMID: 23712352)
J Bacteriol. 2001 Jul;183(14):4134-41. (PMID: 11418552)
PLoS Negl Trop Dis. 2013 Jun 13;7(6):e2279. (PMID: 23785540)
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
Nat Rev Mol Cell Biol. 2022 Jul;23(7):499-515. (PMID: 35190722)
Mol Biol Evol. 2009 Jul;26(7):1641-50. (PMID: 19377059)
Nucleic Acids Res. 2018 Aug 21;46(14):7085-7096. (PMID: 29618058)
J Bacteriol. 2012 Oct;194(20):5495-503. (PMID: 22797754)
J Biol Chem. 2000 Dec 8;275(49):38302-10. (PMID: 10976105)
J Mol Biol. 2023 Jul 15;435(14):168117. (PMID: 37086947)
- Grant Information:
32 393 973 National Natural Science Foundation of China; 2020YFA0906800 National Key Research and Development Program of China
- Accession Number:
0 (Transcription Factors)
0 (Reactive Oxygen Species)
0 (Archaeal Proteins)
0 (Metals)
BBX060AN9V (Hydrogen Peroxide)
J41CSQ7QDS (Zinc)
- Publication Date:
Date Created: 20241227 Date Completed: 20250428 Latest Revision: 20250428
- Publication Date:
20250429
- Accession Number:
PMC11724291
- Accession Number:
10.1093/nar/gkae1263
- Accession Number:
39727184
No Comments.