Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 0370467 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1537-2197 (Electronic) Linking ISSN: 00029122 NLM ISO Abbreviation: Am J Bot Subsets: MEDLINE
    • Publication Information:
      Publication: <2018-> : [Philadelphia, PA] : Wiley
      Original Publication: Baltimore Md : Botanical Society Of America
    • Subject Terms:
    • Abstract:
      Premise: To date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target-enriched nuclear data to improve our understanding of phylogenetic relationships in the family.
      Methods: We used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species in Brunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to infer Brunellia phylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral-state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections in Brunellia.
      Results: Brunellia comprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses.
      Conclusions: Phylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene-tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character-state reconstructions. While target enrichment data allows us to broaden our understanding of diversification in Brunellia, the relationships among subclades remain incompletely understood.
      (© 2022 Botanical Society of America.)
    • References:
      Bagley, J. C., S. Uribe-Convers, M. M. Carlsen, and N. Muchhala. 2020. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Molecular Phylogenetics and Evolution 152: 106769.
      Baker, W. J., S. Dodsworth, F. Forest, S. W. Graham, M. G. Johnson, A. McDonnell, L. Pokorny, et al. 2021. Exploring Angiosperms353: An open, community toolkit for collaborative phylogenomic research on flowering plants. American Journal of Botany 108: 1059-1065.
      Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. Lesin, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455-477.
      Blischak, P. D., J. Chifman, A. D. Wolfe, and L. S. Kubatko. 2018. HyDe: A Python package for genome-scale hybridization detection. Systematic Biology 67: 821-829.
      Bogarín, D., O. A. Pérez-Escobar, D. Groenenberg, S. D. Holland, A. P. Karremans, E. M. Lemmon, A. R. Lemmon, et al. 2018. Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Molecular Phylogenetics and Evolution 129: 27-47.
      Bogdanowicz, D., K. Giaro, and B. Wróbel. 2012. TreeCmp: Comparison of trees in polynomial time. Evolutionary Bioinformatics 8: 475-487.
      Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
      Bouckaert, R. R. 2010. DensiTree: Making sense of sets of phylogenetic trees. Bioinformatics 26: 1372-1373.
      Capella-Gutiérrez, S., J. M. Silla-Martínez, and T. Gabaldón. 2009. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.
      Chen, J. Q., Y. Wu, H. Yang, J. Bergelson, M. Kreitman, and D. Tian. 2009. Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Molecular Biology and Evolution 26: 1523-1531.
      Cuatrecasas, J. 1970. Brunelliaceae. Flora Neotropica monograph 2. Hafner, New York, New York, USA.
      Cuatrecasas J. 1985. Brunelliaceae. Flora Neotropica monograph 2 (suppl.). Hafner, New York, New York, USA.
      Doyle, J., and J. L. Doyle. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin 19: 11-15.
      Du, P., M. W. Hahn, and L. Nakhleh. 2019. Species tree inference under the multispecies coalescent on data with paralogs is accurate. BioRxiv. Website: https://doi.org/10.1101/498378 [preprint].
      Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401-410.
      Fragoso-Martínez, I., G. A. Salazar, M. Martínez-Gordillo, S. Magallón, L. Sánchez-Reyes, E. M. Lemmon, A. R. Lemmon, et al. 2017. A pilot study applying the plant Anchored Hybrid Enrichment method to New World stages. (Salvia subgenus Calosphace; Lamiaceae). Molecular Phylogenetics and Evolution 117: 124-134.
      Gadagkar, S., M. S. Rosenberg, and S. Kumar. 2005. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution 304: 64-74.
      García, N., R. A. Folk, A. W. Meerow, S. Chamala, M. A. Gitzendanner, R. Souza de Oliveira, D. E. Soltis, et al. 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies. (Amaryllidaceae tribe Hippeastreae). Molecular Phylogenetics and Evolution 111: 231-247.
      Gómez-Gutiérrez, M. C., R. T. Pennington, L. E. Neaves, R. I. Milne, S. Madriñán, and J. R. Richardson. 2017. Genetic diversity in the Andes: Variation within and between the South American species of Oreobolus R. Br. (Cyperaceae). Alpine Botany 127: 155-170.
      Grant, V. 1981. Plant speciation. Columbia University Press, New York, New York, USA.
      Heather, J. M., and B. Chain. 2016. The sequence of sequencers: The history of sequencing DNA. Genomics 107: 1-8.
      Hendy, M. D., and D. Penny. 1989. A framework for the quantitative study of evolutionary trees. Systematic Biology 38: 297-309.
      Herrando-Moraira, S., J. A. Calleja, P. Carnicero, K. Fujikawa, M. Galbany-Casals, N. Garcia-Jacas, I. Hyoung-Tak, et al. 2018. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Molecular Phylogenetics and Evolution 128: 69-87.
      Hoang, D. T., O. Chernomor, A. von Haeseler, B. Q. Minh, and L. S. Vinh. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.
      Huson, D. H., and D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254-267.
      Huson, D. H., T., Klöpper, P. J. Lockhart, and M. A. Steel. 2005. Reconstruction of reticulate networks from gene trees. In S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P. Pevzner, and M. Waterman [eds.], Research in computational molecular biology, 233−249. Springer-Verlag, Berlin and Heidelberg, Germany.
      Jabaily, R. S., K. A. Shepherd, P. S. Michener, C. J. Bush, R. Rivero, A. G. Gardner, and E. B. Sessa. 2018. Employing hypothesis testing and data from multiple genomic compartments to resolve recalcitrant backbone nodes in Goodenia sl (Goodeniaceae). Molecular Phylogenetics and Evolution 127: 502-512.
      Johnson, M. G., E. M. Gardner, Y. Liu, R. Medina, B. Goffinet, A. J. Shaw, N. J. C. Zerega, et al. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4: 1600016.
      Johnson, M. G., L. Pokorny, S. Dodsworth, L. R. Botigué, R. S. Cowan, A. Devault, W. L. Eiserhardt, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant esigned using k-medoids clustering. Systematic Biology 68: 594-606.
      Joly, S. 2012. JML: Testing hybridization from species trees. Molecular Ecology Resources 12: 179-184.
      Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Natural Methods 14: 587-589.
      Kanzi, A. M., J. E. San, B. Chimukangara, E. Wilkinson, M. Fish, V. Ramsuran, and T. de Oliveira. 2020. Next generation sequencing and bioinformatics analysis of family genetic inheritance. Frontiers in Genetics 11: 544162.
      Katoh, K., and D. M. Standley. 2013. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
      Kück, P., and G. Longo. 2014. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology 11: 81.
      Kumar, S., A. Filipski, F. Battistuzzi, S. Kosakovsky, and K. Tamura. 2012. Statistics and truth in phylogenomics. Molecular Biology Evolution 29: 457-472.
      Lanfear, R. 2018. Calculating and interpreting gene- and site-concordance factors in phylogenomics. Molecular evolution and phylogenetics blog. Website: http://www.robertlanfear.com/blog/files/concordance_factors.html [accessed 2 March 2022].
      Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913-925.
      Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, et al., 1000 Genome project data processing subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.
      Li, X., Y. Zhao, X. Tu, C. Li, Y. Zhu, H. Zhong, Z. Liu, et al. 2021. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. Plant Diversity 43: 281-291.
      Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46: 523-536.
      Maddison, W. P., and D. R. Maddison. 2018. Mesquite: A modular system for evolutionary analysis, version 3.51. Website: http://www.mesquiteproject.org.
      Mallet, J. 2007. Hybrid speciation. Nature 466: 279-283.
      Mao, K., M. Ruhsam, Y. Ma, S. W. Graham, J. Liu, P. Thomas, R. I. Milne, and P. M. Hollingsworth. 2019. A transcriptome-based resolution for a key taxonomic controversy in Cupressaceae. Annals of Botany 123: 153-167.
      Marques, D. A., J. I. Meier, and O. Seehausen. 2019. A combinatorial view on speciation and adaptive radiation. Trends in Ecology and Evolution 34: 531-544.
      McKain, M. R., M. G. Johnson, S. Uribe-Convers, D. Eaton, and Y. Yang. 2018. Practical considerations for plant phylogenomics. Applications in Plant Sciences 6: e1038.
      Minh, B. Q., M. W. Hahn, and R. Lanfear 2020. New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37: 2727-2733.
      Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, and R. Lanfear. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530-1534.
      Mirarab, S., and T. Warnow. 2015. ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31: i44-i52.
      Morales-Briones, D. F., D. T. Tefarikis, M. J. Moore, S. Smith, S. F. Brockington, A. Timoneda, W. C. Yim, et al. 2021. Disentangling sources of gene tree discordance in phylogenomic data sets: Testing ancient hybridizations in Amaranthaceae. Systematic Biology 70: 219-235.
      Morey, M., A. Fernández-Marmiesse, D. Castiñeiras, J. M. Fraga, M. L. Couce, and J. A. Cocho. 2013. A glimpse into past, present, and future DNA sequencing. Molecular Genetics and Metabolism 110: 3-24.
      Murphy, B., F. Forest, T. Barraclough, J. Rosindell, S. Bellot, R. Cowan, M. Golos, et al. 2020. A phylogenomic analysis of Nepenthes (Nepenthaceae). Molecular Phylogenetics and Evolution 144: 106668.
      Neubig, K. M., W. M. Whitten, J. R. Abbott, S. Elliott, D. E. Soltis, and P. Soltis. 2014. Variables affecting DNA preservation in archival plant specimens. In W. Applequist and L. Campbell [eds.], DNA banking for the 21st century: Proceedings of the U.S. workshop on DNA banking, January 2013, 81-112. William L. Brown Center, Missouri Botanical Garden, St. Louis, USA.
      Nikolov, L. A., P. Shushkov, B. Nevado, X. Gan, I. A. Al-Shehbaz, D. Filatov, C. D. Bailey, et al. 2019. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytologist 222: 1638-1651.
      Nowrousian, M. 2010. Next-generation sequencing techniques for eukaryotic microorganisms: Sequencing-based solutions to biological problems. Eukaryotic Cell 9: 1300-1310.
      Oakley, T. H., M. A. Alexandrou, R. Ngo, M. S. Pankey, C. C. K. Churchill, and K. B. Lopker. 2014. Osiris: Accessible and reproducible phylogenetic and phylogenomic analyses within the Galaxy workflow management system. BMC Bioinformatics 15: 230.
      Oliver, J. C. 2013. Microevolutionary processes generate phylogenomic discordance at ancient divergences. Evolution 67: 1823-1830.
      Orozco, C. I. 2001. Evolutionary biology of Brunellia Ruíz and Pavón (Brunelliaceae, Oxalidales). Ph.D. dissertation, University of Amsterdam, Amsterdam, Netherlands.
      Orozco, C. I., A. Pérez, K. Romoleroux, A. F. Bohorquez, and J. Murillo-A. 2020. Three new species of the Andean genus Brunellia (Brunelliaceae) from Colombia and Ecuador. Phytotaxa 433: 27-40.
      Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48: 612-622.
      Pamilo, P., and M. Nei. 1988. Relationships between gene trees and species trees. Molecular Biology and Evolution 5: 568-583.
      Payseur, B. A., and L. H. Rieseberg. 2016. A genomic perspective on hybridization and speciation. Molecular Ecology 25: 2337-2360.
      Phillips, M. J., F. Delsuc, and D. Penny. 2004. Genome-scale phylogeny and the detection of systematic biases. Molecular Biology and Evolution 21: 1455-1458.
      Pillon, Y., H. C. F. Hopkins, O. Maurin, N. Epitawalage, J. Bradford, Z. S Rogers, W. J. Baker, and F. Forest. 2021. Phylogenomics and biogeography of Cunoniaceae (Oxalidales) with complete generic sampling and taxonomic realignments. American Journal of Botany 108: 1181-1200.
      Price, M. N., P. S. Dehal, and A. P. Arkin. 2010. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One 5(3): e9490.
      Prum, R., J. Berv, A. Dornburg, D. J. Field, J. P. Townsend, E. Moriarty, and A. Lemmon. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526: 569-573.
      Qiu, Y. L., L. Li, B. Wang, J. Y. Xue, T. A. Hendry, R. Q. Li, J. W. Brown, et al. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution 48: 391-425.
      R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: http://www.r-project.org/index.html [accessed March 2020].
      Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics 28: 359-389.
      Rieseberg, L. H. and J. H. Willis 2007. Plant speciation. Science 317:910-914.
      Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic trees. Mathematical Biosciences 53: 131-147.
      Rokas, A., B. L. Williams, N. King, and S. B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804.
      Salichos, L., A. Stamatakis, and A. Rokas. 2014. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Molecular Biology and Evolution 31: 1261-1271.
      Soto Gomez, M., L. Pokorny, M. B. Kantar, F. Forest, I. J. Leitch, B. Gravendeel, P. Wilkin, et al. 2019. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). Applications in Plant Sciences 7: e11254.
      Straub, S. C. K., M. J. Moore, P. S. Soltis, D. E. Soltis, A. Liston, and T. Livshultz. 2014. Phylogenetic signal detection from an ancient rapid radiation: Effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae. Molecular Phylogenetics and Evolution 80: 169-185.
      Shen, X. X., C. T. Hittinger, and A. Rokas. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology and Evolution 1: 0126.
      Smith, S. A., M. J. Moore, J. W. Brown, and Y. Yang. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evolutionary Biology 15: 150.
      Soltis, D. E., V. A. Albert, V. Savolainen, K. Hilu, Y. L. Qiu, M. W. Chase, J. S. Farris, et al. 2004. Genome-scale data, angiosperm relationships, and ‘ending incongruence’: A cautionary tale in phylogenetics. Trends in Plant Science 9: 477-483.
      Soltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulio-Rodriguez, et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704-730.
      Som, A. 2014. Causes, consequences and solutions of phylogenetic incongruence. Briefings in Bioinformatics 16: 536-548.
      Struck, T. H. 2014. TreSpEx-Detection of misleading signal in phylogenetic reconstructions based on tree information. Evolutionary Bioinformatics Online 10: 51-67.
      Sun, M., R. Naeem, J. X. Su, Z. Y. Cao, J. G. Burleigh, P. S. Soltis, D. E. Soltis, et al. 2016. Phylogeny of the Rosidae: A dense taxon sampling analysis. Journal of Systematics and Evolution 54: 363-391.
      Sun, M., D. E. Soltis, P. S. Soltis, X. Zhu, J. G. Burleigh, and Z. Chen. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution 83: 156-166.
      Tange, O. 2018. Gnu Parallel 2018. Website: https://doi.org/10.5281/zenodo.1146014 [accessed March 2020].
      Thiers, B. 2020. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. New York Botanical Garden, Bronx, New York, USA. Website: http://sweetgum.nybg.org/science/ih/ [accessed March 2020].
      Valencia, J., J. Murillo-A., C. I. Orozco, C. Parra, and K. M. Neubig. 2020. Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). PeerJ 8: e8392. Website: https://doi.org/10.7717/peerj.8392.
      Veitia, R. 2005. Paralogs in polyploids: One for all and all for one? Plant Cell 17: 4-11.
      Weitemier, K., S. C. K. Straub, R. C. Cronn, M. Fishbein, R. Schmick, A. McDonnell, and A. Liston. 2014. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences 2: 1400042.
      Wendel, J. F., and J. J. Doyle. 1998. Phylogenetic incongruence: Window into genome history and molecular volution. In D. E. Soltis, P. S. Soltis, and J. J. Doyle [eds.], Molecular systematics of plants II: DNA sequencing, 265-296. Kluwer Academic Publishers, Norwell, Massachusetts, USA.
      Whitfield, J. B., and P. J. Lockhart. 2007. Deciphering ancient rapid radiations. Trends in Ecology and Evolution 22: 258-265.
      Widhelm, T. J., F. Grewe, J. P. Huang, J. A. Mercado-Díaz, B. Goffinet, R. Lücking, B. Moncada, et al. 2019. Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota). Scientific Reports 9: 8968.
      Williams, C. 2022. addNewSupercontigs. Python script available from the author, website: https://github.com/PopGen33/addNewSupercontigs [accessed 14 February 2022].
      Wolfe, K. H. 2001. Yesterday's polyploids and the mystery of diploidization. Nature Reviews Genetics 2: 333-341.
      Wurdack, K. J., and C. C. Davis. 2009. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96: 1551-1570.
      Young, A. D., and J. Gillung. 2020. Phylogenomics-principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology 45: 225-247.
      Zhang, C., M. Rabiee, E. Sayyari, and S. Mirarab. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.
    • Contributed Indexing:
      Keywords: Angiosperms353; Brunellia; Oxalidales; hybridization; incomplete lineage sorting (ILS); locus filtering; phylogenetic discordance; rosids; target enrichment; trait evolution
    • Molecular Sequence:
      Dryad 10.5061/dryad.3tx95x6jd
    • Publication Date:
      Date Created: 20220616 Date Completed: 20220727 Latest Revision: 20220804
    • Publication Date:
      20240105
    • Accession Number:
      10.1002/ajb2.16025
    • Accession Number:
      35709353