Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Thermal comfort evaluation in an educational building with air conditioning located in the warm tropical climate of Colombia

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Materials Science and Engineering
    • Publication Date:
      2020
    • Collection:
      REDICUC - Repositorio Universidad de La Costa
    • Abstract:
      The objective of this work is to evaluate the perception of thermal comfort that students have in building 10 of the Universidad de la Costa located in the city of Barranquilla. For the investigation the methods for the thermal comfort evaluation are analyzed, selecting the Steady-State methodology of Fanger according to the ASHRAE 55 Standard. With the application of the surveys, the thermal sensation that the students had in the building was evaluated, which was preferably fresh and thermal acceptability where 87% responded satisfactorily to indoor climate conditions in classrooms. It was also obtained that the perception of inner thermal comfort is between 21.1 ° C and 23 ° C of temperature. With the results obtained, recommendations are issued to ensure that students feel thermal comfort and the proper regulation of air conditioning systems.
    • File Description:
      application/pdf
    • ISSN:
      1757-8981
      1757-899X
    • Relation:
      [1] Schoen LJ, Alspach PF, Arens EA, Aynsley RM, Bean R 2013 ASHRAE/IES standard 55- 2013. Thermal Environmental Conditions for Human Occupancy vol. 2013 Atlanta; [2] Höppe P 2002 Different aspects of assessing indoor and outdoor thermal comfort, Energy and Buildings vol. 34 no. 6 pp 661–665; [3] Mondelo P, Gregori E, Comas S, Castejón, E 2001 ERGONOMIA 2 - Confort y estrés térmico, 3rd ed. Alfaomega; [4] Jara P 2015 Thermal comfort and its importance for the architectural design and environmental quality of indoors space Arquitectura y cultura vol. 7 pp 106–121; [5] Vera M, Ordenes S 2011 Thermal and Energy Performance Evaluation of a Social Housing in Chile, Using a Building Energy Simulation Software Revista Ingeniería de Construcción vol. 17 no. 3 pp. 133–142; [6] Djamila H 2017 Indoor thermal comfort predictions : Selected issues and trends Renewable and Sustainable Energy Reviews vol. 74 pp. 569–580; [7] Djamila H, Chu C M, Kumaresan S 2013 Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia Building and Environment vol. 62 pp. 133–142; [8] Castilla M M, Álvarez J D, Berenguel M, Pérez M, Rodríguez F, Guzmán J L 2010 Técnicas de Control del Confort en Edificios Revista iberoamericana de automática e informática industrial vol. 7 no. 3 pp. 5–24; [9] Jiang J, Wang D, Liu Y, Xu Y, Liu J 2018 A study on pupils’ learning performance and thermal comfort of primary schools in China Building and Environment vol. 134 pp. 102–113; [10] Gaonkar P, Bapat J, Das D 2018 Location-aware multi-objective optimization for energy cost management in semi-public buildings using thermal discomfort information Sustainable Cities and Society vol. 40 pp. 174–181; [11] Hatt T, Saelzer G, Hempel R, Gerber A 2012 High indoor comfort and very low energy consumption through the implementation of the passive house standard in Chile Revista de la Construccion vol. 11 no. 2 pp. 123–134; [12] Barros-Alvarez M, Balbis-Morejon M, Tovar-Ospino I, Castro-Peña J, de Leon-Siado L, SilvaOrtega J I, Rosales D 2017 Energy consumption comparison between air conditioning system Mini-Split and Variable Refrigerant Flow in an educational building Espacios vol. 38 no. 43 pp 19; [13] Fernández F and Martilli A 2012 El clima urbano: aspectos generales y su aplicación en el área de Madrid Índice pp. 21–24; [14] Ré I, Blasco M 2014 A hygrothermal and energy evaluation of a school building belonging to the ‘700 schools’ national program, in the metropolitan area of San Juan, Argentina Hábitat Sustentable vol. 6 no. 2 pp. 40–51; [15] Valderrama C, Cohen A, Lagiere P, Puiggali J R 2011 Análisis del comportamiento energético en un conjunto de edifi cios multifuncionales. Caso de estudio Campus Universitario Revista de la Construccion vol. 10 no. 2 pp. 26–39; [16] Cabello J J, Sousa V, Sagastume A, Vandecasteele C 2019 Data supporting the improvement of forecasting and control of electricity consumption in hotels Data in Brief vol. 25 pp. 104-147; [17] Campos A 2017 Confort Térmico Y Eficiencia Energética En Un Centro Docente Universidad Politécnica De Cataluña pp. 188; [18] Madrigal J A, Cabello J J, Sagastume A, Balbis M. 2018 Evaluación de la Climatización en Locales Comerciales , Integrando Técnicas de Termografía , Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings , Integrating Thermography Techniques , Simulation and Modeling Información Tecnológica vol. 29 no. 4 pp. 179–188; [19] Ruey-Lung H, Tzu-Ping L, Nai-Jung K 2006 Field experiments on thermal comfort in campus classrooms in Taiwan Energy and Buildings vol. 38 no. 1 pp. 53–62; [20] Kuchen E, Fisch M N, Gonzalo G E, Nozica G N 2009 Predicción del indice de disconformidad térmica en espacios de oficina considerando el diagnóstico de usuarios Avances en Energías Renovables y Medio Ambiente vol. 13 pp. 15–22; [21] González E M, Claret G Morales B 2009 About thermal comfort: neutral temperatures in the humid tropic Revista de Investigación Científica en Arquitectura Journal of Scientific Research pp. 33–38; [22] Mishra A K, Derks M T, Kooi L, Loomans M G, Kort H S 2017 Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom Building and Environment vol. 125 pp. 464–474; [23] Puteh M, Ibrahim M H, Adnan M, Che’Ahmad C N, Noh N M 2012 Thermal Comfort in Classroom: Constraints and Issues Procedia - Social and Behavioral Sciences vol. 46 pp. 1834–1838; [24] Corgnati S P, Filippi M, Viazzo S 2007 Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort Building and Environment vol. 42 no. 2 pp. 951–959; [25] Pacheco J C, García R, García C A 2016 Methodological guide for determining the effect of thermal discomfort on standardized industrial operations Tecnura vol. 20 pp. 122–131; [26] Ciuha U, Tobita K, Mcdonnell A C, Igor B 2019 The effect of thermal transience on the perception of thermal comfort Physiology & Behavior; [27] Kwok S S and Lee E W 2011 A study of the importance of occupancy to building cooling load in prediction by intelligent approach Energy Conversion and Management vol. 52 no. 7 pp. 2555–2564; https://hdl.handle.net/11323/6546; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
    • Accession Number:
      10.1088/1757-899X/844/1/012030
    • Online Access:
      https://doi.org/10.1088/1757-899X/844/1/012030
      https://hdl.handle.net/11323/6546
      https://repositorio.cuc.edu.co/
    • Rights:
      CC0 1.0 Universal ; http://creativecommons.org/publicdomain/zero/1.0/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2
    • Accession Number:
      edsbas.BDA80F13