Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Optimal Demand Response Using Battery Storage Systems and Electric Vehicles in Community Home Energy Management System-Based Microgrids.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Demand response (DR) strategies are recieving much attention recently for their applications in the residential sector. Electric vehicles (EVs), which are considered to be a fairly new consumer load in the power sector, have opened up new opportunities by providing the active utilization of EVs as a storage unit. Considering their storage capacities, they can be used in vehicle-to-grid (V2G) or vehicle-to-community (V2C) options instead of taking power in peak times from the grid itself. This paper suggests a community-based home energy management system for microgrids to achieve flatter power demand and peak demand shaving using particle swarm optimization (PSO) and user-defined constraints. A dynamic clustered load scheduling scheme is proposed, including a method for managing peak shaving using rules specifically designed for PV systems that are grid-connected alongside battery energy storage systems and electric vehicles. The technique being proposed involves determining the limits of feed-in and demand dynamically, using estimated load demands and profiles of PV power for the following day. Additionally, an optimal rule-based management technique is presented for the peak shaving of utility grid power that sets the charge/discharge schedules of the battery and EV one day ahead. Utilizing the PSO algorithm, the optimal inputs for implementing the rule-based peak shaving management strategy are calculated, resulting in an average improvement of about 7% in percentage peak shaving (PPS) when tested using MATLAB for numerous case studies. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)