Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exploring the Root Morphological Traits of Diverse-Origin Cultivated Soybean.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Root morphological traits (RMTs) profoundly influence plant growth, resilience to abiotic stresses, and yield in soybean (Glycine max). In a comprehensive study spanning two consecutive years (2021–2022), the RMTs were assessed in 216 soybean accessions from 34 diverse origins. The investigation involved randomized batches with plants cultivated in PVC pipes filled with horticultural soil and harvested at the V2 growth stage. All the germplasms exhibited significant differences (p < 0.001) in all measured traits, i.e., total root length (TRL), root volume (RV), average diameter (AD), number of tips (NT), number of forks (NF), and tertiary total length (TTL). Among the top 5% performers in TRL, which, interestingly, were exclusively of Korean origin, germplasm IT115491 displayed an impressive average TRL value of 1426.24 cm. Notably, germplasms from Serbia and Korea predominantly occupied the upper AD quantile, with IT156262 exhibiting the highest AD value of 0.57 mm. A correlation analysis showed strong positive associations of TRL with RV (r = 0.85), NT (r = 0.84), NF (r = 0.96), and TTL (r = 0.88), whereas it had a negative association with AD (r = −0.25). A principal component analysis (PCA) showed a cumulative 95% of the total variance in the data in the first three principal components (PCs). PC1 (eigenvalue = 4.64) accounted for a 77.00% variance, with TRL, RV, NF, NT, and TTL exhibiting the highest associated eigenvectors. K-means clustering was performed with three clusters. Cluster 2 contained accessions with higher AD values, whereas Cluster 3 comprised accessions with increased TRL, NT, NF, and TTL, which mostly originated from Korea. Our findings offer targeted insights for plant breeders to optimize specific root traits and enhance crop performance across diverse environmental conditions by strategically targeting these clusters. Additionally, the influence of cultivar origin on root traits warrants further investigation, with implications for future breeding programs. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Agronomy is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)