Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Microscopic Mechanism of Asphalt Mixture Reinforced by Polyurethane and Silane Coupling Agent: A Molecular Dynamics Simulation-Based Study.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Abstract:
Most modified asphalts require high-temperature shearing and prolonged mixing to achieve a uniform structure, often resulting in substantial exhaust gas pollution. This study explores the utilization of polyurethane (PU) as a warm mix asphalt modifier, leveraging its favorable compatibility with asphalt at lower temperatures to mitigate emissions. To address the inherent limitations of PU-modified asphalt mixtures, namely, poor low-temperature performance and susceptibility to water damage, silane coupling agents (SCAs) are introduced to reinforce the asphalt–aggregate interfacial strength. At the microscopic level, the optimal PU content (20.8%) was determined through analysis of micro-viscosity and radial distribution functions (RDFs). SCA effects on interfacial properties were assessed using adhesion work, adhesion depth, and interfacial thermal stability. At the macroscopic level, performance metrics—including strength, high-temperature resistance, low-temperature resistance, and water stability—were evaluated against a benchmark hot mix SBS-modified asphalt mixture. The results indicate that PU-modified asphalts exhibit superior high-temperature performance and strength but slightly lower low-temperature performance and insufficient water stability. The addition of SCAs improved both low-temperature and water stability attributes, enabling the mixtures to meet specification requirements. The simulation results suggest that KH-550, which chemically reacts with isocyanate groups (-OCN) in PU, exhibits a better interfacial reinforcement effect than KH-570. Therefore, KH-550 is recommended as the preferred SCA for PU-modified asphalt mixtures in practical applications. [ABSTRACT FROM AUTHOR]
No Comments.