Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Confirmatory Factor Analysis Approach in Increasing Journalistic Information Literacy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      المقال يركز على تعزيز مهارات المعلومات الصحفية بين المهاسنترى (الطلاب) في جامعة إسلام رادن إنتان لامبونغ من خلال نهج تحليل العوامل التأكيدية (CFA). يحدد المؤشرات الرئيسية - التعرف، الاستكشاف، الاختيار، التنظيم، الإبداع، العرض، التقييم، والتطبيق - التي تسهم بشكل كبير في تحسين مهارات المعلومات في العمل الصحفي. تكشف الدراسة أن العديد من المهاسنترى يواجهون صعوبات في مهارات المعلومات، مما يبرز ضرورة التعليم الفعال في مجال المهارات المعلوماتية في العصر الرقمي. تشير النتائج إلى أن نموذج "تمكين 8"، الذي تم تطويره من ورش العمل، فعال في تعزيز هذه المهارات، كما يتضح من قيم تحميل العوامل القوية في تحليل CFA. [Extracted from the article]
    • Abstract:
      Information literacy is an important skill in the digital era, especially in understanding and producing high-quality journalistic work, like those produced by the Mahasantri. However, many Mahasantri still face difficulties in accessing, evaluating and using information effectively. Therefore, research is needed to determine factors that are can describe and support increased journalistic information literacy, one of which is an approach using confirmatory factor analysis (CFA). This research aims to identify information literacy indicators that support increasing information literacy in journalistic works. It uses quantitative analysis with CFA and uses the Mahasantri sample. This study shows that the indicators identify, explore, select, organize, create, present, assess, and contribute greatly to increasing information literacy in journalistic works, based on factor loading values above 0.5. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of KnE Social Sciences is the property of Knowledge E DMCC and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)