Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Mary Ann Liebert, Inc Country of Publication: United States NLM ID: 101466659 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1937-335X (Electronic) Linking ISSN: 19373341 NLM ISO Abbreviation: Tissue Eng Part A Subsets: MEDLINE
    • Publication Information:
      Original Publication: New Rochelle, NY : Mary Ann Liebert, Inc.
    • Subject Terms:
    • Abstract:
      Background: Stem cell-based bone tissue engineering with adipose-derived stromal cells (ASCs) has shown great promise for revolutionizing treatment of large bone deficits. However, there is still a lack of consensus on cell surface markers identifying osteoprogenitors. Fluorescence-activated cell sorting has identified a subpopulation of CD105(low) cells with enhanced osteogenic differentiation. The purpose of the present study was to compare the ability of CD90 (Thy-1) to identify osteoprogenitors relative to CD(105).
      Methods: Unsorted cells, CD90(+), CD90(-), CD105(high), and CD105(low) cells were treated with an osteogenic differentiation medium. For evaluation of in vitro osteogenesis, alkaline phosphatase (ALP) staining and alizarin red staining were performed at 7 days and 14 days, respectively. RNA was harvested after 7 and 14 days of differentiation, and osteogenic gene expression was examined by quantitative real-time polymerase chain reaction. For evaluation of in vivo osteogenesis, critical-sized (4-mm) calvarial defects in nude mice were treated with the hydroxyapatite-poly(lactic-co-glycolic acid) scaffold seeded with the above-mentioned subpopulations. Healing was followed using micro-CT scans for 8 weeks. Calvaria were harvested at 8 weeks postoperatively, and sections were stained with Movat's Pentachrome.
      Results: Transcriptional analysis revealed that the CD90(+) subpopulation was enriched for a more osteogenic subtype relative to the CD105(low) subpopulation. Staining at day 7 for ALP was greatest in the CD90(+) cells, followed by the CD105(low) cells. Staining at day 14 for alizarin red demonstrated the greatest amount of mineralized extracellular matrix in the CD90(+) cells, again followed by the CD105(low) cells. Quantification of in vivo healing at 2, 4, 6, and 8weeks postoperatively demonstrated increased bone formation in defects treated with CD90(+) ASCs relative to all other groups. On Movat's Pentachrome-stained sections, defects treated with CD90(+) cells showed the most robust bony regeneration. Defects treated with CD90(-) cells, CD105(high) cells, and CD105(low) cells demonstrated some bone formation, but to a lesser degree when compared with the CD90(+) group.
      Conclusions: While CD105(low) cells have previously been shown to possess an enhanced osteogenic potential, we found that CD90(+) cells are more capable of forming bone both in vitro and in vivo. These data therefore suggest that CD90 may be a more effective marker than CD105 to isolate a highly osteogenic subpopulation for bone tissue engineering.
    • References:
      Mol Ther. 2009 Feb;17(2):302-8. (PMID: 19066595)
      J Nucl Med. 2008 Mar;49(3):414-21. (PMID: 18287261)
      Brain Res. 1981 Dec 28;230(1-2):307-16. (PMID: 6119137)
      Biomaterials. 2010 May;31(13):3564-71. (PMID: 20153525)
      Stem Cells. 2006 Feb;24(2):376-85. (PMID: 16322640)
      PLoS One. 2010 Jun 17;5(6):e11177. (PMID: 20567510)
      Head Face Med. 2006 Mar 31;2:8. (PMID: 16573842)
      Stem Cells. 2006 May;24(5):1246-53. (PMID: 16410391)
      Science. 1999 Apr 2;284(5411):143-7. (PMID: 10102814)
      Lab Chip. 2007 Dec;7(12):1775-82. (PMID: 18030400)
      Int J Urol. 2010 Jan;17(1):75-82. (PMID: 20002225)
      J Tissue Eng Regen Med. 2011 Aug;5(8):655-64. (PMID: 21268288)
      Biomaterials. 2010 Jul;31(19):5122-30. (PMID: 20347134)
      Stem Cells. 2007 Oct;25(10):2575-82. (PMID: 17585167)
      Nature. 2009 Jan 22;457(7228):490-4. (PMID: 19078959)
      Int J Obes Relat Metab Disord. 2000 Nov;24 Suppl 4:S41-4. (PMID: 11126240)
      Histochem Cell Biol. 2012 Jun;137(6):733-42. (PMID: 22327831)
      Histol Histopathol. 2010 Jun;25(6):807-15. (PMID: 20376787)
      Tissue Eng. 2001 Apr;7(2):211-28. (PMID: 11304456)
      Nature. 1964 Aug 22;203:886-7. (PMID: 14204089)
      Cytotherapy. 2004;6(1):7-14. (PMID: 14985162)
      J Cell Physiol. 2006 Jul;208(1):64-76. (PMID: 16557516)
      J Immunol. 1981 Mar;126(3):843-50. (PMID: 7462633)
      J Cell Physiol. 2008 Feb;214(2):413-21. (PMID: 17654479)
      Exp Hematol. 2000 Aug;28(8):875-84. (PMID: 10989188)
      Mol Cell Biol. 1986 Aug;6(8):2923-31. (PMID: 2878365)
      Exp Hematol. 1974;2(2):83-92. (PMID: 4455512)
      J Biol Chem. 2011 Nov 11;286(45):39497-509. (PMID: 21949130)
      Cytometry A. 2010 Jan;77(1):22-30. (PMID: 19852056)
      Stem Cell Rev Rep. 2011 Mar;7(1):64-76. (PMID: 20396979)
      Mol Biol Cell. 2002 Dec;13(12):4279-95. (PMID: 12475952)
      J Histochem Cytochem. 2010 May;58(5):455-62. (PMID: 20124093)
      Tissue Eng. 2001 Dec;7(6):729-41. (PMID: 11749730)
      J Cell Biochem. 2007 Dec 15;102(6):1375-88. (PMID: 17975795)
      J Hered. 1972 Sep-Oct;63(5):259-63. (PMID: 4566335)
      J Craniofac Surg. 2008 Jan;19(1):192-7. (PMID: 18216688)
      J Biomed Mater Res. 2000 Dec 5;52(3):543-52. (PMID: 11007623)
      Stem Cells. 2006 Jul;24(7):1728-37. (PMID: 16601078)
      Nat Biotechnol. 2004 May;22(5):560-7. (PMID: 15077117)
      Stem Cells. 2005 Mar;23(3):412-23. (PMID: 15749936)
      Stem Cells. 2011 Mar;29(3):404-11. (PMID: 21425404)
      Folia Histochem Cytobiol. 2008;46(3):307-14. (PMID: 19056534)
      J Immunol. 1986 Feb 15;136(4):1482-9. (PMID: 2868059)
      Nucleic Acids Res. 2003 Dec 15;31(24):e154. (PMID: 14654707)
      J Bone Miner Res. 1999 Mar;14(3):362-75. (PMID: 10027901)
      Transplantation. 1974 Apr;17(4):331-40. (PMID: 4150881)
      J Cell Physiol. 2001 Oct;189(1):54-63. (PMID: 11573204)
      Nat Mater. 2011 Jul 17;10(8):637-44. (PMID: 21765399)
      J Theor Biol. 1982 Sep 21;98(2):221-34. (PMID: 6184575)
    • Grant Information:
      R01 DE021683 United States DE NIDCR NIH HHS; United States HHMI Howard Hughes Medical Institute; R01-DE019434 United States DE NIDCR NIH HHS; R01-DE021683-01 United States DE NIDCR NIH HHS
    • Accession Number:
      0 (Thy-1 Antigens)
      EC 3.1.3.1 (Alkaline Phosphatase)
    • Publication Date:
      Date Created: 20121211 Date Completed: 20130926 Latest Revision: 20211021
    • Publication Date:
      20231215
    • Accession Number:
      PMC3589870
    • Accession Number:
      10.1089/ten.TEA.2012.0370
    • Accession Number:
      23216074