Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Polet DT;Polet DT; Bertram JEA; Bertram JEA
  • Source:
    PLoS computational biology [PLoS Comput Biol] 2019 Nov 21; Vol. 15 (11), pp. e1007444. Date of Electronic Publication: 2019 Nov 21 (Print Publication: 2019).
  • Publication Type:
    Journal Article; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • Subject Terms:
    • Abstract:
      It is widely held that quadrupeds choose steady gaits that minimize their energetic cost of transport, but it is difficult to explore the entire range of possible footfall sequences empirically. We present a simple model of a quadruped that can spontaneously produce any of the thousands of planar footfall sequences available to quadrupeds. The inelastic, planar model consists of two point masses connected with a rigid trunk on massless legs. It requires only center of mass position, hind and forelimb proportions and a stride-length to speed relationship as input. Through trajectory optimization of a work and force-rate cost, and a large sample of random initial guesses, we provide evidence for the global optimality of symmetrical four-beat walking at low speeds and two beat running (trotting) at intermediate speeds. Using input parameters based on measurements in dogs (Canis lupus familiaris), the model predicts the correct phase offset in walking and a realistic walk-trot transition speed. It also spontaneously reproduces the double-hump ground reaction force profile observed in walking, and the smooth single-hump profile observed in trotting. Actuation appears elastic, despite the model's lack of springs, suggesting that spring-like locomotory behaviour emerges as an optimal tradeoff between work minimization and force-rate penalties.
    • Abstract:
      The authors have declared that no competing interests exist.
    • References:
      J Theor Biol. 1993 Aug 7;163(3):277-314. (PMID: 8246506)
      J Exp Biol. 2007 Jan;210(Pt 2):366-72. (PMID: 17210971)
      J Exp Biol. 2007 Jul;210(Pt 14):2401-2. (PMID: 17601942)
      J Exp Biol. 2008 Jan;211(Pt 1):138-49. (PMID: 18083742)
      PLoS One. 2013 Nov 08;8(11):e78392. (PMID: 24260117)
      Curr Biol. 2015 Sep 21;25(18):2452-6. (PMID: 26365256)
      Bioinspir Biomim. 2018 Mar 14;13(3):036002. (PMID: 29369045)
      J Morphol. 1968 Mar;124(3):353-60. (PMID: 5657937)
      J Comput Nonlinear Dyn. 2016 Mar;11(2):0210081-2100812. (PMID: 27222653)
      J Biomech. 1990;23 Suppl 1:65-78. (PMID: 2081746)
      J Exp Zool A Ecol Integr Physiol. 2020 Jan;333(1):9-19. (PMID: 31033243)
      J Exp Biol. 2013 Mar 15;216(Pt 6):933-8. (PMID: 23447662)
      J Exp Biol. 2019 Jan 10;222(Pt 1):. (PMID: 30446542)
      J Exp Biol. 2005 Feb;208(Pt 3):439-45. (PMID: 15671332)
      J Exp Biol. 2004 Sep;207(Pt 20):3545-58. (PMID: 15339951)
      Am J Physiol. 1977 Nov;233(5):R243-61. (PMID: 411381)
      Science. 1965 Nov 5;150(3697):701-8. (PMID: 5844074)
      Am J Vet Res. 2000 Jul;61(7):832-8. (PMID: 10895909)
      J Morphol. 1997 Nov;234(2):183-96. (PMID: 9360320)
      Am J Physiol Endocrinol Metab. 2002 Feb;282(2):E448-57. (PMID: 11788378)
      Proc Biol Sci. 2006 Nov 22;273(1603):2861-7. (PMID: 17015312)
      J Exp Biol. 2018 Feb 13;221(Pt 3):. (PMID: 29217625)
      Science. 2004 Jan 2;303(5654):80-3. (PMID: 14704426)
      J Biomech Eng. 2001 Jun;123(3):264-9. (PMID: 11476370)
      J Exp Biol. 2005 Mar;208(Pt 6):979-91. (PMID: 15767300)
      J Exp Biol. 2004 Apr;207(Pt 10):1715-28. (PMID: 15073204)
      J Zool. 1978 Jul;185 Pt 3:289-308. (PMID: 700246)
      J Exp Biol. 2007 Jul;210(Pt 13):2390-8. (PMID: 17575044)
      J Exp Biol. 2015 Sep;218(Pt 18):2830-9. (PMID: 26400978)
      Bioinspir Biomim. 2015 Sep 03;10(5):056008. (PMID: 26334310)
      J Biomech. 2002 Jan;35(1):117-24. (PMID: 11747890)
      PLoS One. 2015 Feb 23;10(2):e0117384. (PMID: 25707000)
      Elife. 2017 Sep 14;6:. (PMID: 28910262)
      J Appl Physiol (1985). 2011 Apr;110(4):873-80. (PMID: 21212245)
      Physiol Rev. 1989 Oct;69(4):1199-227. (PMID: 2678167)
      J Exp Biol. 1990 Nov;154:273-85. (PMID: 2277260)
      Zoology (Jena). 2007;110(4):271-89. (PMID: 17482802)
      J Exp Biol. 2012 Dec 1;215(Pt 23):4144-56. (PMID: 22933611)
      J R Soc Interface. 2011 Jan 6;8(54):74-98. (PMID: 20542957)
      J Exp Biol. 2007 Feb;210(Pt 3):533-40. (PMID: 17234623)
      Nature. 2006 Jan 5;439(7072):72-5. (PMID: 16155564)
      Nature. 1990 Jul 19;346(6281):265-7. (PMID: 2374590)
      Am Sci. 1975 Jul-Aug;63(4):413-9. (PMID: 1137237)
      J Theor Biol. 2005 Nov 21;237(2):170-92. (PMID: 15961114)
      J Appl Physiol (1985). 1992 Dec;73(6):2709-12. (PMID: 1490989)
      J Exp Biol. 2008 Dec;211(Pt 23):3744-9. (PMID: 19011215)
    • Publication Date:
      Date Created: 20191122 Date Completed: 20200214 Latest Revision: 20240722
    • Publication Date:
      20250114
    • Accession Number:
      PMC6871776
    • Accession Number:
      10.1371/journal.pcbi.1007444
    • Accession Number:
      31751339