Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The inhibition of apoptosis through myocardial postconditioning by affecting Fas/FasIg signaling through miR139-3p and miR181a-1.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8908809 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-8191 (Electronic) Linking ISSN: 08860440 NLM ISO Abbreviation: J Card Surg Subsets: MEDLINE
    • Publication Information:
      Publication: Hoboken, NJ : Wiley-Blackwell
      Original Publication: Mount Kisco, N.Y. : Futura Pub. Co., Inc., [c1986-
    • Subject Terms:
    • Abstract:
      Background and Aim of the Study: Ischemic postconditioning (PostC) is considered to be one of the strongest mechanisms limiting the extent of myocardial infarction, and reducing ischemia-reperfusion (I/R) injury. I/R-induced myocardial injury results in apoptosis, autophagy, and necrosis. The aim of the present study was to investigate the roles of the necrotic gene cytochrome b-245 beta chain (Cybb); Cybb-related microRNA miR139-3p; the autophagy gene Beclin-1 (Becn1); proapoptotic genes Fas, Faslg and growth arrest and DNA-damage-inducible 45 alpha (Gadd45a); and apoptosis-related microRNA miR181a-1 levels on I/R injury, as well as, the potential protective effects of PostC through this gene and microRNAs.
      Methods: The left main coronary artery was subjected to ischemia for 30 minutes, followed by reperfusion for 120 minutes. PostC involved three cycles of I/R, each lasting 10 seconds. Gene and microRNA levels were analyzed using a quantitative reverse transcription-polymerase chain reaction.
      Results: Although an increase was observed in the expression levels of the Cybb, Fas, Faslg and Gadd45a genes, the miR139-3p, miR181a-1, and Becn1 expression levels were found to decrease with I/R injury. PostC was determined to restore the expression of all the genes to the normal levels.
      Conclusions: The abovementioned genes can be used as important prognostic markers in the diagnosis of reperfusion injury and in the evaluation of treatment efficacy. It was further noted that increased expression of CYBB, which is one of the target genes for miR139-3p, and a decreased expression of miR181a-1 may cause apoptosis by affecting Fas and Faslg signaling. PostC can inhibit apoptosis by increasing miR139-3p and miR181a-1 levels.
      (© 2020 Wiley Periodicals, Inc.)
    • References:
      Heusch G, Kleinbongard P, Skyschally A, Levkau B, Schulz R, Erbel R. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc Res. 2012;94(2):237-245. https://doi.org/10.1093/cvr/cvr271.
      Gerczuk PZ, Kloner RA. Protecting the heart from ischemia: an update on ischemic and pharmacologic conditioning. Hosp Pract (1995). 2011;39(3):35-43. https://doi.org/10.3810/hp.2011.08.577.
      Bousselmi R, Lebbi MA, Ferjani M. Myocardial ischemic conditioning: physiological aspects and clinical applications in cardiac surgery. J Saudi Heart Assoc. 2014;26(2):93-100. https://doi.org/10.1016/j.jsha.2013.11.001.
      Zhao Z-Q, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579-H588. https://doi.org/10.1152/ajpheart.01064.2002.
      Argaud L, Gateau-Roesch O, Augeul L, et al. Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts. Am J Physiol Heart Circ Physiol. 2008;294(1):H386-H391. https://doi.org/10.1152/ajpheart.01035.2007.
      Luo W, Li B, Lin G, Huang R. Postconditioning in cardiac surgery for tetralogy of Fallot. J Thorac Cardiovasc Surg. 2007;133(5):1373-1374. https://doi.org/10.1016/j.jtcvs.2007.01.028.
      Badalzadeh R, Baradaran B, Alihemmati A, Yousefi B, Abbaszadeh A. Troxerutin preconditioning and ischemic postconditioning modulate inflammatory response after myocardial ischemia/reperfusion injury in rat model. Inflammation. 2017;40(1):136-143. https://doi.org/10.1007/s10753-016-0462-8.
      Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43(4):860-878. https://doi.org/10.1016/s0008-6363(99)00187-x.
      Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb Med. 2017;47(2):110-117. https://doi.org/10.28920/dhm47.2.110-117.
      Wu M-Y, Yiang G-T, Liao W-T, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650-1667. https://doi.org/10.1159/000489241.
      Hu C, Dandapat A, Chen J, et al. LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion. Cardiovasc Res. 2007;76(2):292-302. https://doi.org/10.1016/j.cardiores.2007.07.003.
      Marzilli M, Morrone D, Guarini G. Postconditioning. Heart Metab. 2012;54:20-24.
      Walker MJA, Curtis MJ, Hearse DJ, et al. The lambeth conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res. 1988;22(7):447-455. https://doi.org/10.1093/cvr/22.7.447.
      Kaneko T, Hayashida M, Saito Y, Hikawa Y, Yasuda K. Myocardial ischemia score as a preoperative screening method for intraoperative myocardial ischemia. Masui. 2000;49(2):145-149.
      Sahna E, Acet A, Ozer MK, Olmez E. Myocardial ischemia-reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. J Pineal Res. 2002;33(4):234-238.
      Ozyıldırım S, Baltaci AK, Sahna E, Mogulkoc R. Effects of chronic and acute zinc supplementation on myocardial ischemia-reperfusion injury in rats. Biol Trace Elem Res. 2017;178(1):64-70. https://doi.org/10.1007/s12011-016-0903-0.
      Wei C, Li H, Han L, Zhang L, Yang X. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J Cardiovasc Pharmacol. 2013;61(5):416-422. https://doi.org/10.1097/FJC.0b013e318287d501.
      Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262.
      Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472-485. https://doi.org/10.1016/j.redox.2015.09.005.
      Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245-313. https://doi.org/10.1152/physrev.00044.2005.
      Matsushima S, Tsutsui H, Sadoshima J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc Med. 2014;24(5):202-205. https://doi.org/10.1016/j.tcm.2014.03.003.
      Huang J, Canadien V, Lam GY, et al. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A. 2009;106(15):6226-6231. https://doi.org/10.1073/pnas.0811045106.
      Braunersreuther V, Montecucco F, Ashri M, et al. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol. 2013;64:99-107. https://doi.org/10.1016/j.yjmcc.2013.09.007.
      He F, Liu H, Guo J, et al. Inhibition of microRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cell Physiol Biochem. 2018;51(1):186-200. https://doi.org/10.1159/000495173.
      Yu B, Meng F, Yang Y, Liu D, Shi K. NOX2 antisense attenuates hypoxia-induced oxidative stress and apoptosis in cardiomyocyte. Int J Med Sci. 2016;13(8):646-652. https://doi.org/10.7150/ijms.15177.
      Bell RM, Cave AC, Johar S, Hearse DJ, Shah AM, Shattock MJ. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19(14):2037-2039. https://doi.org/10.1096/fj.04-2774fje.
      Yao W, Han X, Zhang Y, et al. Intravenous anesthetic protects hepatocyte from reactive oxygen species-induced cellular apoptosis during liver transplantation in vivo. Oxid Med Cell Longev. 2018;2018:4780615. https://doi.org/10.1155/2018/4780615.
      Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336-342. https://doi.org/10.1038/nature09783.
      Ren X-P, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119(17):2357-2366. https://doi.org/10.1161/CIRCULATIONAHA.108.814145.
      Varga ZV, Zvara Á, Faragó N, et al. MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Am Jo Physiol Heart Circ Physiol. 2014;307(2):H216-H227. https://doi.org/10.1152/ajpheart.00812.2013.
      Liu Z, Tuo Y-H, Chen J-W, et al. NADPH oxidase inhibitor regulates microRNAs with improved outcome after mechanical reperfusion. J Neurointerv Surg. 2017;9(7):702-706. https://doi.org/10.1136/neurintsurg-2016-012463.
      Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284(41):28319-28331. https://doi.org/10.1074/jbc.M109.024406.
      Wang Q, Guo W, Hao B, et al. Mechanistic study of TRPM2-Ca(2+)-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition. Autophagy. 2016;12(8):1340-1354. https://doi.org/10.1080/15548627.2016.1187365.
      Zhang D, Zhang W, Li D, Fu M, Chen R, Zhan Q. GADD45A inhibits autophagy by regulating the interaction between BECN1 and PIK3C3. Autophagy. 2015;11(12):2247-2258. https://doi.org/10.1080/15548627.2015.1112484.
      Mei Y, Glover K, Su M, Sinha SC. Conformational flexibility of BECN1: essential to its key role in autophagy and beyond. Protein Sci. 2016;25(10):1767-1785. https://doi.org/10.1002/pro.2984.
      Zhu H, He L. Beclin 1 biology and its role in heart disease. Curr Cardiol Rev. 2015;11(3):229-237.
      Pal R, Bajaj L, Sharma J, et al. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease. Sci Rep. 2016;6:22866. https://doi.org/10.1038/srep22866.
      Liu G, Yuan Y, Long M, et al. Beclin-1-mediated autophagy protects against cadmium-activated apoptosis via the Fas/FasL pathway in primary rat proximal tubular cell culture. Sci Rep. 2017;7(1):977. https://doi.org/10.1038/s41598-017-00997-w.
      Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. https://doi.org/10.1080/01926230701320337.
      Woo SH, Park IC, Park MJ, et al. Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-κB activation. Int J Cancer. 2004;112(4):596-606. https://doi.org/10.1002/ijc.20433.
      Ham O, Lee S-Y, Song B-W, et al. Modulation of Fas-Fas ligand interaction rehabilitates hypoxia-induced apoptosis of mesenchymal stem cells in ischemic myocardium niche. Cell Transplant. 2015;24(7):1329-1341. https://doi.org/10.3727/096368914X681748.
      He S-F, Zhu H-J, Han Z-Y, et al. MicroRNA-133b-5p is involved in cardioprotection of morphine preconditioning in rat cardiomyocytes by targeting Fas. Can J Cardiol. 2016;32(8):996-1007. https://doi.org/10.1016/j.cjca.2015.10.019.
      Teplyakov AT, Berezikova EN, Shilov SN, et al. Role of soluble Fas ligand in myocardial remodeling, severity and outcomes of chronic heart failure. Ter Arkh. 2016;88(9):10-16. https://doi.org/10.17116/terarkh201688910-16.
      Szymanowski A, Li W, Lundberg A, et al. Soluble Fas ligand is associated with natural killer cell dynamics in coronary artery disease. Atherosclerosis. 2014;233(2):616-622. https://doi.org/10.1016/j.atherosclerosis.2014.01.030.
      Zhang L, Zhang L, Li Y, Chen M, Zhang H, Gao M. Effects of high dose glucose-insulin-potassium infusion on myocardial injury and serum sFas/sFasL concentration in acute myocardial infarction. Zhonghua Nei Ke Za Zhi. 2005;44(7):499-502.
      Tong T, Ji J, Jin S, et al. Gadd45a expression induces bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol. 2005;25(11):4488-4500. https://doi.org/10.1128/MCB.25.11.4488-4500.2005.
      Wang N, Yang C, Xie F, et al. Gadd45α: a novel diabetes-associated gene potentially linking diabetic cardiomyopathy and baroreflex dysfunction. PLoS One. 2012;7(12):e49077. https://doi.org/10.1371/journal.pone.0049077.
      Yang G, Zhu Y, Dong X, Duan Z, Niu X, Wei J. TLR2-ICAM1-Gadd45α axis mediates the epigenetic effect of selenium on DNA methylation and gene expression in Keshan disease. Biol Trace Elem Res. 2014;159(1-3):69-80. https://doi.org/10.1007/s12011-014-9985-8.
      Zhu H-J, Han Z-Y, He S-F, et al. Specific MicroRNAs comparisons in hypoxia and morphine preconditioning against hypoxia-reoxgenation injury with and without heart failure. Life Sci. 2017;170:82-92. https://doi.org/10.1016/j.lfs.2016.11.028.
      He Y, Liu J-N, Zhang J-J, Fan W. Involvement of microRNA-181a and Bim in a rat model of retinal ischemia-reperfusion injury. Int J Ophthalmol. 2016;9(1):33-40. https://doi.org/10.18240/ijo.2016.01.06.
      Ramasamy S, Velmurugan G, Shanmugha Rajan K, Ramprasath T, Kalpana K. MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One. 2015;10(3):e0121401. https://doi.org/10.1371/journal.pone.0121401.
      Shao B, Liao L, Yu Y, et al. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB J. 2015;29(9):3935-3944. https://doi.org/10.1096/fj.15-272823.
      Zou C, Chen J, Chen K, et al. Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis. Exp Cell Res. 2015;331(2):352-361. https://doi.org/10.1016/j.yexcr.2014.11.007.
    • Grant Information:
      115S323 The Scientific and Technological Research Council of Turkey (TUBITAK)
    • Contributed Indexing:
      Keywords: Becn1; Fas; Nox2; ischemic postconditioning; miR139-3p; miR181a-1
    • Accession Number:
      0 (FAS protein, human)
      0 (FASLG protein, human)
      0 (Fas Ligand Protein)
      0 (MicroRNAs)
      0 (Mir181A1HG, human)
      0 (Proteins)
      0 (fas Receptor)
      EC 1.6.3.- (CYBB protein, human)
      EC 1.6.3.- (NADPH Oxidase 2)
    • Publication Date:
      Date Created: 20200117 Date Completed: 20200910 Latest Revision: 20210211
    • Publication Date:
      20221213
    • Accession Number:
      10.1111/jocs.14426
    • Accession Number:
      31945231