Item request has been placed!
×
Item request cannot be made.
×

Coyote (Canis latrans) in South America: potential routes of colonization.
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Monroy-Vilchis O;Monroy-Vilchis O; GonzÁlez-Maya JF; GonzÁlez-Maya JF; GonzÁlez-Maya JF; Balbuena-Serrano Á; Balbuena-Serrano Á; Elvir F; Elvir F; Zarco-GonzÁlez MM; Zarco-GonzÁlez MM; RodrÍguez-Soto C; RodrÍguez-Soto C
- Source:
Integrative zoology [Integr Zool] 2020 Nov; Vol. 15 (6), pp. 471-481. Date of Electronic Publication: 2020 Jun 25.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley Publishing Asia Pty Ltd Country of Publication: Australia NLM ID: 101492420 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-4877 (Electronic) Linking ISSN: 17494869 NLM ISO Abbreviation: Integr Zool Subsets: MEDLINE
- Publication Information: Publication:
2012-: Richmond, Vic., Australia : Wiley Publishing Asia Pty Ltd
Original Publication: 2006-2012: [Oxford, England] : Blackwell Publishing - Subject Terms:
- Abstract: During the last century, the coyote (Canis latrans) has increased its distribution in Central America. Before the 1980s, it had not been recorded in Panama. New records show that coyotes have crossed the Panama Canal, indicating that continues to expand; therefore, there is a possibility that it will reach northern South America. Our objectives were to identify potential coyote colonization routes to South America, and the variables that favor its expansion. We hypothesized that habitat fragmentation benefits coyote expansion. We applied 7 algorithms to model the potential distribution of the coyote, using 196 presence records and 12 variables. The models with better performance were used to generate a consensus model. Using our consensus model and the areas with highest probability of presence, a potential colonization route was generated between Central America and northern South America. This route lies through southern Costa Rica, along the Pacific coast of Panama to the south, to the Andean mountains in northern Colombia. The variables that explained potential coyote distribution were human population density, altitude, and percentage of crops with positive influence, and tropical broadleaf forests with negative influence. These results indicate that human activities and deforestation are related to coyote distribution expansion. Actions can be implemented within the identified route to improve environmental management, in order to avoid the presence of the coyote in the ecosystems of northern South America.
(© 2020 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.) - References: Adriaensen F, Cardon JP, deBlust G et al. (2003). The application of ‘least-cost’ modeling as a functional landscape model. Landscape and Urban Planning 64, 233-47.
Arias-Alzate A, González-Maya JF, Víquez-R LR (2012). Conservación de mamíferos del Chocó: distribución, riqueza y representatividad de las áreas protegidas. Revista de Biología Tropical 2, 71-82.
Armenteras D, Cabrera E, Rodríguez N, Retana J (2013). National and regional determinants of tropical deforestation in Colombia. Regional Environmental Change 13, 1181-93.
Balestrieri A, Bogliani G, Boano G et al. (2016). Modelling the distribution of forest-dependent species in human-dominated landscapes: patterns for the pine marten in intensively cultivated lowlands. PLoS ONE 11, e0158203.
Balestrieri A, Remonti L, Ruiz-González A, Gómez-Moliner BJ, Vergara M, Prigioni C (2010). Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mammalian Biology 75, 412-9.
Bekoff M, Gese EM (2003). Coyote (Canis latrans). In: Feldhamer GA, Thompson BC, Chapman JA, eds. Wild Mammals of North America: Biology, Management and Conservation, 2nd edn. Hopkins University Press, Baltimore, MD, pp. 467-81.
Benson JF, Patterson BR (2013). Moose (Alces alces) predation by eastern coyotes (Canis latrans) and eastern coyote× eastern wolf (Canis latrans × Canis lycaon) hybrids. Canadian Journal of Zoology 91, 837-41.
Blackburn TM, Pyšek P, Bacher S et al. (2011). A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26, 333-9.
Buechley ER, Sekercioglu CH (2016). The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biological Conservation 198, 220-8.
Catford JA, Jansson R, Nilsson C (2009). Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15, 22-40.
Cope RC, Ross JV, Wittmann TA, Watts MJ, Cassey P (2017). Predicting the risk of biological invasions using environmental similarity and transport network connectedness. Risk Analysis 39, 35-53.
Cove MV, Pardo LE, Spínola RM, Jackson VL, Sáenz JL (2012). Coyote Canis latrans (Carnivora: Canidae) range extension in northeastern Costa Rica: Possible explanations and consequences. Latin American Journal of Conservation 2, 82-6.
Davalos LM, Bejarano AC, Hall MA, Correa HL, Corthals A, Espejo OJ (2011). Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots. Environmental Science and Technology 45, 1219-27.
Doherty TS, Dickman CR, Nimmo DG, Ritchie EG (2015). Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biological Conservation 190, 60-8.
Domínguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012). Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation. Journal for Nature Conservation 20, 247-53.
Drygala F, Zoller H, Stier N, Roth M (2010). Dispersal of the raccoon dog Nyctereutes procyonoides into a newly invaded area in Central Europe. Wildlife Biology 16, 150-61.
Elith JCH, Graham RP, Anderson M et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-51.
Elliot EE, Vallance S, Molles LE (2016). Coexisting with coyotes (Canis latrans) in an urban environment. Urban Ecosystems 19, 1335-50.
Estes JA, Terborgh J, Brashares JS et al. (2011). Trophic downgrading of planet Earth. Science 33, 301-6.
Estoup A, Guillemaud T (2010). Reconstructing routes of invasion using genetic data: why, how and so what? Molecular Ecology 190, 4113-30.
Fener HM, Ginsberg JR, Sanderson EW, Gompper ME (2005). Cronology of range expansion of the coyote, Canis latrans, in New York. The Canadian Field-Naturalist 119, 1-5.
Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecology Letters 8, 1299-306.
Fort JL, Nielsen CK, Carver AD, Moreno R, Meyer NF (2018). Factors influencing local attitudes and perceptions regarding jaguars Panthera onca and National Park conservation in Panama. Oryx 52, 282-91.
Franklin J (2009). Mapping Species Distributions: Spatial Inference and Predictions. Cambridge University Press, Cambridge, UK.
Gallagher AJ, Trull PF, Faherty MS et al. (2019). Predatory behaviors of coyotes (Canis latrans) living in coastal ecosystems. Ethology Ecology & Evolution 31, 198-204.
Gompper ME (2002). Top carnivores in the suburbs? ecological and conservation issues raised by colonization of north-eastern north america by coyotes: the expansion of the coyote's geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. Bioscience 52, 185-90.
Grajales-Tam KM, González-Romero A (2014). Determinación de la dieta estacional del coyote (canis latrans) en la región norte de la reserva de la biosfera mapimí, México. Revista Mexicana de Biodiversidad 85, 553-64.
Guisan A, Zimmermann NE (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-86.
Heppenheimer E, Brzeski KE, Hinton JW et al. (2018). High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (Canis latrans) populations. Ecology and Evolution 8, 12641-55.
Hidalgo-Mihart MG, Cantú-Salazar L, González-Romero A, López-González CA (2004). Historical and present distribution of coyote (Canis latrans) in Mexico and Central America. Journal of Biogeographic 31, 2025-38.
Hidalgo-Mihart MG, Contreras-Moreno FM, Pérez-Solano LA, Hernández-Lara C (2013). Primeros registros de coyote (Canis latrans) en Campeche, México. Revista Mexicana de Biodiversidad 84, 1012-7.
Hinton JW, Chamberlain MJ, Van Manen FT (2012). Long-distance movements of transient coyotes in eastern North Carolina. The American Midland Naturalist 168, 281-8.
Hody JW, Kays R (2018). Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys 759, 81-97.
Hody AW, Moreno R, Meyer NF, Pacifici K, Kays R (2019). Canid collision-expanding populations of coyotes (Canis latrans) and crab-eating foxes (Cerdocyon thous) meet up in Panama. Journal of Mammalogy 100, 1819-30.
Kautz R, Kawula R, Hoctor T (2006). How much is enough? Landscape-scale conservation for the Florida panther. Biological Conservervation 130, 118-33.
Mainali KP, Warren DL, Dhileepan K et al. (2015). Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Global Change Biology 21, 4464-80.
Manel S, Williams HC, Ormerod SJ (2001). Evaluating presence-absence models in ecology: The need to account for prevalence. Journal of Applied Ecology 38, 921-31.
Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15, 59-69.
Mateo Vega J, Arroyo Mora JP, Potvin C (2019). Tree aboveground biomass and species richness of the mature tropical forests of Darién, Panama, and their role in global climate change mitigation and biodiversity conservation. Conservation Science and Practice 1, e42.
Méndez-Carbajal P, Moreno R (2014). Mammalia, Carnivora, Canidae, Canis latrans (Say, 1823): Actual distribution in Panama. Check List 10, 376-9.
Meyer NF, Moreno R, Martínez-Morales MA, Reyna-Hurtado R (2019). Spatial ecology of a large and endangered tropical mammal: the white-lipped peccary in Darién, Panama. In: Reyna-Hurtado R, Chapman CA, eds. Movement Ecology of Neotropical Forest Mammals. Springer, Cham, Switzerland.
Mollot G, Pantel JH, Romanuk TN (2017). The effects of invasive species on the decline in species richness: a global meta-analysis. In: David A, Bohan AJ, Dumbrell FM, eds. Advances in Ecological Research. Academic Press, Cambridge, MA.
Monge-Nájera J, Morera-Brenes B (1986). La dispersión del coyote (Canis latrans) y la evidencia de los antiguos cronistas. Brenesia 25, 251-60.
Monge-Nájera J, Morera-Brenes B (1987). Why is the coyote (Canis latrans) expanding its range? A critique of the deforestation hypothesis. Revista de Biología Tropical 35, 169-71.
Olson DM, Dinerstein E (2002). The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 89, 199-224.
Peña-Mondragón JL, Castillo-Álvarez A, Benítez-Malvido J (2014). Primer registro de coyote (Canis latrans) en la región de la selva Lacandona, Chiapas, México. Acta Zoológica Mexicana 30, 696-700.
Penrod K, Cabanero C, Beier P et al. (2006). South Coast Missing Linkages Project: A Linkage Design for the Santa Monica-Sierra Madre Connection. South Coast Wildlands, Idyllwild, CA.
Phillips SJ, Anderson RP, Schapire RE (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-59.
Poessel SA, Gese E, Young JK (2017). Environmental factors influencing the occurrence of coyotes and conflicts in urban areas. Landscape and Urban Planning 157, 259-69.
Ripple WJ, Wirsing AJ, Wilmers CC, Letnic M (2013). Widespread mesopredator effects after wolf extirpation. Biological Conservation 160, 70-9.
Rodewald AD, Arcese P (2016). Direct and indirect interactions between landscape structure and invasive or overabundant species. Current Landscape Ecology Reports 1, 30-9.
Rodríguez-Soto C, Monroy-Vilchis O, Maiorano L et al. (2011). Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation. Diversity and Distributions 17, 350-61.
Rodríguez-Soto C, Monroy-Vilchis O, Zarco-González MM (2013). Corridors for jaguar (Panthera onca) in Mexico: Conservation strategies. Journal for Nature Conservation 21, 438-43.
Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009). Consensual predictions of potential distributional areas for invasive species: A case study of Argentine ants in the Iberian Peninsula. Biological Invasions 11, 1017-31.
Rutkowski R, Krofel M, Giannatos G et al. (2015). A European concern? Genetic structure and expansion of golden jackals (Canis aureus) in Europe and the Caucasus. PLoS ONE 10, e0141236.
Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A (2012). Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7, e43943.
St-Laurent GP, Gélinas N, Potvin C (2013). REDD+ and the agriculture frontier: understanding colonists’ utilization of the land. Land Use Policy 31, 516-25.
Stohlgren TJ, Schnase JL (2006). Risk analysis for biological hazards: What we need to know about invasive species. Risk Analysis 26, 163-73.
Theobald EM (2006). Exploring the functional connectivity of landscapes using landscape networks. In: Crooks KR, Sanjayan M, eds. Connectivity Conservation. Cambridge University Press, Cambridge, UK, pp. 587-619.
Uden DR, Allen CR, Angeler DG, Corral L, Fricke KA (2015). Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biological Invasions 17, 2831-50.
Vaughan C (1983). Coyote range expansion in Costa Rica and Panama. Brenesia 21, 27-32.
White TA, Lundy MG, Montgomery WI et al. (2012). Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biological Invasions 14, 2203-15.
Witczuk J, Pagacz S, Mills LS (2013). Disproportionate predation on endemic marmots by invasive coyotes. Journal of Mammalogy 94, 702-13.
Yemshanov D, Koch FH, Ben Haim Y, Smith WD (2010). Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest. Risk Analysis 30, 261-76.
Zarco-González MM, Monroy-Vilchis O, Rodríguez-Soto C, Urios V (2012). Spatial factors and management associated with livestock depredation by Puma concolor in Central Mexico. Human Ecology 40, 631-8.
Zarco-González MM, Monroy-Vilchis O, Alaníz J (2013). Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biological Conservation 159, 80-7. - Contributed Indexing: Keywords: Canis latrans; carnivore; distribution; expansion; invasive; management; species distribution model
- Publication Date: Date Created: 20200520 Date Completed: 20210208 Latest Revision: 20210208
- Publication Date: 20250114
- Accession Number: 10.1111/1749-4877.12446
- Accession Number: 32427390
- Source:

Copyright © Department of Culture and Tourism, all rights reserved.
Copyright © 2024 Department of Culture and Tourism, all rights reserved. Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
No Comments.