Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Precise capture and dynamic relocation of nanoparticulate biomolecules through dielectrophoretic enhancement by vertical nanogap architectures.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Toward the development of surface-sensitive analytical techniques for biosensors and diagnostic biochip assays, a local integration of low-concentration target materials into the sensing region of interest is essential to improve the sensitivity and reliability of the devices. As a result, the dynamic process of sorting and accurate positioning the nanoparticulate biomolecules within pre-defined micro/nanostructures is critical, however, it remains a huge hurdle for the realization of practical surface-sensitive biosensors and biochips. A scalable, massive, and non-destructive trapping methodology based on dielectrophoretic forces is highly demanded for assembling nanoparticles and biosensing tools. Herein, we propose a vertical nanogap architecture with an electrode-insulator-electrode stack structure, facilitating the generation of strong dielectrophoretic forces at low voltages, to precisely capture and spatiotemporally manipulate nanoparticles and molecular assemblies, including lipid vesicles and amyloid-beta protofibrils/oligomers. Our vertical nanogap platform, allowing low-voltage nanoparticle captures on optical metasurface designs, provides new opportunities for constructing advanced surface-sensitive optoelectronic sensors.
    • References:
      Ying, J. Y.-R. Nanostructured Materials (Academic Press, San Diego, 2001).
      Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007). (PMID: 1706728110.1146/annurev.physchem.58.032806.104607)
      Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996). (PMID: 10.1126/science.271.5251.933)
      Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007). (PMID: 1748611310.1038/ncb1596)
      Cai, S., Sze, J. Y., Ivanov, A. P. & Edel, J. B. Small molecule electro-optical binding assay using nanopores. Nat. Commun. 10, 1797 (2019). (PMID: 30996223647014610.1038/s41467-019-09476-4)
      Adato, R. & Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013). (PMID: 23877168375903910.1038/ncomms3154)
      De Jong, W. H. & Borm, P. J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008). (PMID: 10.2147/IJN.S596)
      Choi, H. S. & Frangioni, J. V. Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol. Imaging 9, 291–310 (2010). (PMID: 210840273017480)
      Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016). (PMID: 2677968010.1002/adma.20150415026779680)
      Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004). (PMID: 10.1146/annurev.fluid.36.050802.122124)
      Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008). (PMID: 1849785110.1038/nmat2162)
      Reimann, P. Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002). (PMID: 10.1016/S0370-1573(01)00081-3)
      Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). (PMID: 1291769410.1038/nature01935)
      Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005). (PMID: 1603441310.1038/nature03831)
      Di Carlo, D. Inertial microfluidics. Lab Chip 9, 3038–3046 (2009). (PMID: 1982371610.1039/b912547g)
      Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005). (PMID: 10.1103/RevModPhys.77.977)
      Rho, J. et al. Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry. Biosens. Bioelectron. 102, 121–128 (2018). (PMID: 2912871410.1016/j.bios.2017.11.027)
      Sitti, M. & Hashimoto, H. Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans. Mechatron. 5, 199–211 (2000). (PMID: 10.1109/3516.847093)
      Junno, T., Deppert, K., Montelius, L. & Samuelson, L. Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 66, 3627–3629 (1995). (PMID: 10.1063/1.113809)
      Lee, H., Purdon, A. M., Chu, V. & Westervelt, R. M. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett. 4, 995–998 (2004). (PMID: 10.1021/nl049562x)
      Tanase, M. et al. Magnetic alignment of fluorescent nanowires. Nano Lett. 1, 155–158 (2001). (PMID: 10.1021/nl005532s)
      Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, 1978).
      Squires, T. M. Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip 9, 2477–2483 (2009). (PMID: 1968057310.1039/b906909g)
      Nadappuram, B. P. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80–88 (2019). (PMID: 3051028010.1038/s41565-018-0315-8)
      Ibsen, S. D. et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 11, 6641–6651 (2017). (PMID: 2867144910.1021/acsnano.7b00549)
      Khoshmanesh, K., Nahavandi, S., Baratchi, S., Mitchell, A. & Kalantar-zadeh, K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens. Bioelectron. 26, 1800–1814 (2011). (PMID: 2093338410.1016/j.bios.2010.09.022)
      Barik, A., Chen, X. & Oh, S.-H. Ultralow-power electronic trapping of nanoparticles with sub-10 nm gold nanogap electrodes. Nano Lett. 16, 6317–6324 (2016). (PMID: 2760279610.1021/acs.nanolett.6b02690)
      Ertsgaard, C. T. et al. Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett. 18, 5946–5953 (2018). (PMID: 3007173210.1021/acs.nanolett.8b02654)
      Strobel, S., Sperling, R. A., Fenk, B., Parak, W. J. & Tornow, M. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices. Phys. Chem. Chem. Phys. 13, 9973–9977 (2011). (PMID: 2138702110.1039/c0cp02718a)
      Fisher, J. & Giaever, I. Tunneling through thin insulating layers. J. Appl. Phys. 32, 172–177 (1961). (PMID: 10.1063/1.1735973)
      Pohl, H. A. The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1951). (PMID: 10.1063/1.1700065)
      Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D 31, 2338–2353 (1998). (PMID: 10.1088/0022-3727/31/18/021)
      Wang, J., Wei, M. T., Cohen, J. A. & Ou‐Yang, H. D. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe. Electrophoresis 34, 1915–1921 (2013). (PMID: 2361635110.1002/elps.201200614)
      Gascoyne, P. R. & Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002). (PMID: 12210248272625610.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1)
      Morgan, H. & Green, N. G. AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Baldock, 2003).
      Castellanos, A., Ramos, A., Gonzalez, A., Green, N. G. & Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D 36, 2584 (2003). (PMID: 10.1088/0022-3727/36/20/023)
      Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interf. Sci. 217, 420–422 (1999). (PMID: 10.1006/jcis.1999.6346)
      Green, N. G., Ramos, A., González, A., Morgan, H. & Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E 66, 026305 (2002). (PMID: 10.1103/PhysRevE.66.026305)
      Olesen, L. H., Bruus, H. & Ajdari, A. Ac electrokinetic micropumps: the effect of geometrical confinement, faradaic current injection, and nonlinear surface capacitance. Phys. Rev. E 73, 056313 (2006). (PMID: 10.1103/PhysRevE.73.056313)
      Ajdari, A. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 61, R45–R48 (2000). (PMID: 10.1103/PhysRevE.61.R45)
      Brown, A. B. D., Smith, C. G. & Rennie, A. R. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys. Rev. E 63, 016305 (2000). (PMID: 10.1103/PhysRevE.63.016305)
      Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G. & Morgan, H. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, 056302 (2003). (PMID: 10.1103/PhysRevE.67.056302)
      Urbanski, J. P., Thorsen, T., Levitan, J. A. & Bazant, M. Z. Fast AC electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Lett. 89, 143508 (2006). (PMID: 10.1063/1.2358823)
      Bazant, M. Z. & Ben, Y. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6, 1455–1461 (2006). (PMID: 1706617010.1039/b608092h)
      Urbanski, J. P., Levitan, J. A., Burch, D. N., Thorsen, T. & Bazant, M. Z. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps. J. Colloid Interf. Sci. 309, 332–341 (2007). (PMID: 10.1016/j.jcis.2007.01.095)
      Oh, J., Hart, R., Capurro, J. & Noh, H. M. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel. Lab Chip 9, 62–78 (2009). (PMID: 1920933710.1039/B801594E)
      Green, N. G. & Morgan, H. Dielectrophoresis of submicrometer latex spheres. 1. Experimental results. J. Phys. Chem. B 103, 41–50 (1999). (PMID: 10.1021/jp9829849)
      O’Konski, C. T. Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. J. Phys. Chem. 64, 605–619 (1960). (PMID: 10.1021/j100834a023)
      Nakano, A. & Ros, A. Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis 34, 1085–1096 (2013). (PMID: 2340078910.1002/elps.201200482)
      Hughes, M. P. Nanoelectromechanics in Engineering and Biology (CRC Press, Boca Raton, 2003).
      Liu, S.-J., Wei, H.-H., Hwang, S.-H. & Chang, H.-C. Dynamic particle trapping, release, and sorting by microvortices on a substrate. Phys. Rev. E 82, 026308 (2010). (PMID: 10.1103/PhysRevE.82.026308)
      Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, Burlington, 2011).
      Lee, D.-H., Yu, C., Papazoglou, E., Farouk, B. & Noh, H. M. Dielectrophoretic particle–particle interaction under AC electrohydrodynamic flow conditions. Electrophoresis 32, 2298–2306 (2011). (PMID: 2182313210.1002/elps.201100161)
      Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013). (PMID: 23420871357552910.1083/jcb.201211138)
      Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010). (PMID: 20383142292202110.1038/nsmb.1799)
      Jamasbi, E., Wade, J. D., Separovic, F. & Hossain, M. A. Amyloid beta (aβ) peptide and factors that play important roles in alzheimer’s disease. Curr. Med. Chem. 23, 884–892 (2016). (PMID: 2692368010.2174/0929867323666160229113911)
      Ono, K., Condron, M. M. & Teplow, D. B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl Acad. Sci. USA 106, 14745–14750 (2009). (PMID: 1970646810.1073/pnas.0905127106)
      Pham, J. D., Chim, N., Goulding, C. W. & Nowick, J. S. Structures of oligomers of a peptide from β-amyloid. J. Am. Chem. Soc. 135, 12460–12467 (2013). (PMID: 23927812378720210.1021/ja4068854)
      Carrotta, R., Bauer, R., Waninge, R. & Rischel, C. Conformational characterization of oligomeric intermediates and aggregates in β‐lactoglobulin heat aggregation. Protein Sci. 10, 1312–1318 (2001). (PMID: 11420433237411810.1110/ps.42501)
      Nichols, M. R. et al. Biophysical comparison of soluble amyloid-β(1–42) protofibrils, oligomers, and protofilaments. Biochemistry 54, 2193–2204 (2015). (PMID: 2575646610.1021/bi500957g)
      Chen, X. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013). (PMID: 2399905310.1038/ncomms3361)
      Barik, A. et al. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat. Commun. 8, 1867 (2017). (PMID: 29192277570937710.1038/s41467-017-01635-9)
      Chen, Y. & Pepin, A. Nanofabrication: conventional and nonconventional methods. Electrophoresis 22, 187–207 (2001). (PMID: 1128888510.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0)
      Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016). (PMID: 10.1038/natrevmats.2016.21)
      Adato, R., Aksu, S. & Altug, H. Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Mater. Today 18, 436–446 (2015). (PMID: 10.1016/j.mattod.2015.03.001)
      Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008). (PMID: 1822995310.1021/cr068107d)
      Seo, M. & Park, H.-R. Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater. 8, 1900662 (2020). (PMID: 10.1002/adom.201900662)
      Ryu, Y.-S. et al. Ultrasensitive terahertz sensing of gold nanoparticles inside nano slot antennas. Opt. Express 25, 30591–30597 (2017). (PMID: 2922108610.1364/OE.25.030591)
    • Accession Number:
      0 (Biocompatible Materials)
      0 (Dimethylpolysiloxanes)
      0 (Lipids)
      63148-62-9 (baysilon)
    • Publication Date:
      Date Created: 20200606 Date Completed: 20200818 Latest Revision: 20210604
    • Publication Date:
      20231215
    • Accession Number:
      PMC7272609
    • Accession Number:
      10.1038/s41467-020-16630-w
    • Accession Number:
      32499540