References: Donald, J. & Gass, M. Pathogenesis of disciform detachment of the neuroepithelium: III. Senile disciform macular degeneration. Am J Ophthalmol 63, 617–645 (1967). (PMID: 10.1016/0002-9394(67)90028-1)
Liu, B., Deng, T. & Zhang, J. Risk factors for central serous chorioretinopathy: a systematic review and meta-analysis. Retina 36, 9–19 (2016). (PMID: 10.1097/IAE.0000000000000837)
Kitzmann, A. S., Pulido, J. S., Diehl, N. N., Hodge, D. O. & Burke, J. P. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology 115, 169–173 (2008). (PMID: 10.1016/j.ophtha.2007.02.032)
Miki, A. et al. Common variants in the complement factor H gene confer genetic susceptibility to central serous chorioretinopathy. Ophthalmology 121, 1067–1072 (2014). (PMID: 10.1016/j.ophtha.2013.11.020)
Miki, A. et al. Genome-Wide Association Study to Identify a New Susceptibility Locus for Central Serous Chorioretinopathy in the Japanese Population. Invest Ophthalmol Vis Sci 59, 5542–5547 (2018). (PMID: 10.1167/iovs.18-25497)
de Jong, E. K. et al. Chronic central serous chorioretinopathy is associated with genetic variants implicated in age-related macular degeneration. Ophthalmology 122, 562–570 (2015). (PMID: 10.1016/j.ophtha.2014.09.026)
Hosoda, Y. et al. CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. Proc Natl Acad Sci USA 115, 6261–6266 (2018). (PMID: 10.1073/pnas.1802212115)
Imamura, Y., Fujiwara, T., Margolis, R. & Spaide, R. F. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29, 1469–1473 (2009). (PMID: 10.1097/IAE.0b013e3181be0a83)
Maruko, I., Iida, T., Sugano, Y., Ojima, A. & Sekiryu, T. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina 31, 1603–1608 (2011). (PMID: 10.1097/IAE.0b013e31820f4b39)
Jirarattanasopa, P. et al. Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology 119, 1666–1678 (2012). (PMID: 10.1016/j.ophtha.2012.02.021)
Kuroda, Y. et al. Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol. 169, 199–207 (2016). (PMID: 10.1016/j.ajo.2016.06.043)
Kim, Y., Kang, S. & Bai, K. Choroidal thickness in both eyes of patients with unilaterally active central serous chorioretinopathy. Eye 25, 1635 (2011). (PMID: 10.1038/eye.2011.258)
Sohrab, M., Wu, K. & Fawzi, A. A. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One 7, e48631 (2012). (PMID: 10.1371/journal.pone.0048631)
Shiihara, H. et al. Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning. Jpn J Ophthalmol 62, 643–651 (2018). (PMID: 10.1007/s10384-018-0625-2)
Hiroe, T. & Kishi, S. Dilatation of Asymmetric Vortex Vein in Central Serous Chorioretinopathy. Ophthalmol Retina 2, 152–161 (2018). (PMID: 10.1016/j.oret.2017.05.013)
Savastano, M. C., Rispoli, M., Savastano, A. & Lumbroso, B. En face optical coherence tomography for visualization of the choroid. Ophthalmic Surg Lasers Imaging Retina 46, 561–565 (2015). (PMID: 10.3928/23258160-20150521-07)
Savastano, M. C. et al. Classification of haller vessel arrangements in acute and chronic central serous chorioretinopathy imaged with en face optical coherence tomography. Retina 38, 1211–1215 (2018). (PMID: 10.1097/IAE.0000000000001678)
Shiihara, H. et al. Running pattern of choroidal vessel in en face OCT images determined by machine learning–based quantitative method. Graefes Arch Clin Exp Ophthal 257, 1879–1887 (2019). (PMID: 10.1007/s00417-019-04399-8)
Sonoda, S. et al. Structural changes of inner and outer choroid in central serous chorioretinopathy determined by optical coherence tomography. PLoS One 11, e0157190 (2016). (PMID: 10.1371/journal.pone.0157190)
Henning, R. J. & Sawmiller, D. R. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49, 27–37 (2001). (PMID: 10.1016/S0008-6363(00)00229-7)
Kishi, S. et al. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy. PLoS One 13, e0206646 (2018). (PMID: 10.1371/journal.pone.0206646)
Saito, M., Noda, K., Saito, W. & Ishida, S. Relationship between choroidal blood flow velocity and choroidal thickness in patients with regression of acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthal 256, 227–229 (2018). (PMID: 10.1007/s00417-017-3791-x)
Rochepeau, C. et al. Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy. Am J Ophthalmol 194, 26–34 (2018). (PMID: 10.1016/j.ajo.2018.07.004)
Al-Sheikh, M. et al. Quantitative features of the choriocapillaris in healthy individuals using swept-source optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48, 623–631 (2017). (PMID: 10.3928/23258160-20170802-04)
Prünte, C. & Flammer, J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 121, 26–34 (1996). (PMID: 10.1016/S0002-9394(14)70531-8)
Saito, M. et al. Macular choroidal blood flow velocity decreases with regression of acute central serous chorioretinopathy. Br J Ophthalmol. 97, 775–780 (2013). (PMID: 10.1136/bjophthalmol-2012-302349)
Mendrinos, E. & Pournaras, C. J. Topographic variation of the choroidal watershed zone and its relationship to neovascularization in patients with age‐related macular degeneration. Acta Ophthalmol. 87, 290–296 (2009). (PMID: 10.1111/j.1755-3768.2008.01247.x)
Lee, J. E. et al. Topographical relationship between the choroidal watershed zone and submacular idiopathic choroidal neovascularisation. Br J Ophthalmol. 100, 652–659 (2016). (PMID: 10.1136/bjophthalmol-2015-306678)
Hong, Y. et al. Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 15, 7538–7550 (2007). (PMID: 10.1364/OE.15.007538)
Fluss, R., Faraggi, D. & Reiser, B. Estimation of the Youden Index and its associated cutoff point. Bio J 47, 458–472 (2005). (PMID: 10.1002/bimj.200410135)
No Comments.