Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

EIF2α phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Hindawi Country of Publication: India NLM ID: 100883691 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1462-5822 (Electronic) Linking ISSN: 14625814 NLM ISO Abbreviation: Cell Microbiol Subsets: MEDLINE
    • Publication Information:
      Publication: 2022- : Mumbai : Hindawi
      Original Publication: Oxford : Wiley-Blackwell, c1999-
    • Subject Terms:
    • Abstract:
      Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNA met to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2α T169A or with an endogenous CRISPR/Cas9-generated eIF2α T169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of μORF in epimastigotes. eIF2α T169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.
      (© 2020 John Wiley & Sons Ltd.)
    • References:
      Abuin, G., Freitas, L., Colli, W., Alves, M., & Schenkman, S. (1999). Expression of trans-sialidase and 85-kDa glycoprotein genes in Trypanosoma cruzi is differentially regulated at the post-transcriptional level by labile protein factors. The Journal of Biological Chemistry, 274, 13041-13047.
      Amorim, J. C., Batista, M., da Cunha, E. S., Lucena, A. C. R., Lima, C. V. P., Sousa, K., … Marchini, F. K. (2017). Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Scientific Reports, 7, 9899.
      Andreev, D. E., O'Connor, P. B., Fahey, C., Kenny, E. M., Terenin, I. M., Dmitriev, S. E., … Baranov, P. V. (2015). Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. eLife, 4, e03971.
      Andrews, N. W., Hong, K. S., Robbins, E. S., & Nussenzweig, V. (1987). Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Experimental Parasitology, 64, 474-484.
      Araguth, M. F., Rodrigues, M. M., & Yoshida, N. (1988). Trypanosoma cruzi metacyclic trypomastigotes: Neutralization by the stage-specific monoclonal antibody 1G7 and immunogenicity of 90 kD surface antigen. Parasite Immunology, 10, 707-712.
      Araya, J. E., Cano, M. I., Yoshida, N., & Da Silveira, J. F. (1994). Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastigoates of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 65, 161-169.
      Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38, D457-D462.
      Aulas, A., Fay, M. M., Lyons, S. M., Achorn, C. A., Kedersha, N., Anderson, P., & Ivanov, P. (2017). Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 130, 927-937.
      Avila, A. R., Dallagiovanna, B., Yamada-Ogatta, S. F., Monteiro-Goes, V., Fragoso, S. P., Krieger, M. A., & Goldenberg, S. (2003). Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis. Genetics and Molecular Research, 2, 159-168.
      Avila, C. C., Peacock, L., Machado, F. C., Gibson, W., Schenkman, S., Carrington, M., & Castilho, B. A. (2016). Phosphorylation of eIF2alpha on threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation. Molecular and Biochemical Parasitology, 205, 16-21.
      Baird, T. D., & Wek, R. C. (2012). Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Advances in Nutrition, 3, 307-321.
      Bangs, J. D., Uyetake, L., Brickman, M. J., Balber, A. E., & Boothroyd, J. C. (1993). Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. Journal of Cell Science, 105, 1101-1113.
      Belew, A. T., Junqueira, C., Rodrigues-Luiz, G. F., Valente, B. M., Oliveira, A. E. R., Polidoro, R. B., … Teixeira, S. M. R. (2017). Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathogens, 13, e1006767.
      Bogorad, A. M., Lin, K. Y., & Marintchev, A. (2017). Novel mechanisms of eIF2B action and regulation by eIF2alpha phosphorylation. Nucleic Acids Research, 45, 11962-11979.
      Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
      Brecht, M., & Parsons, M. (1998). Changes in polysome profiles accompany trypanosome development. Molecular and Biochemical Parasitology, 97, 189-198.
      Camargo, E. P. (1964). Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de São Paulo, 6, 93-100.
      Cassola, A. (2011). RNA granules living a post-transcriptional life: The trypanosomes' case. Current Chemical Biology, 5, 108-117.
      Chow, C., Cloutier, S., Dumas, C., Chou, M. N., & Papadopoulou, B. (2011). Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation. Cellular Microbiology, 13, 1059-1077.
      Chung, J., Rocha, A. A., Tonelli, R. R., Castilho, B. A., & Schenkman, S. (2013). Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells. The Biochemical Journal, 451, 257-267.
      Clayton, C. (2019). Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biology, 9, 190072.
      Cloutier, S., Laverdiere, M., Chou, M.-N., Boilard, N., Chow, C., & Papadopoulou, B. (2012). Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS One, 7, e35085.
      Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367-1372.
      Cribb, P., Esteban, L., Trochine, A., Girardini, J., & Serra, E. (2010). Trypanosoma cruzi TBP shows preference for C/G-rich DNA sequences in vitro. Experimental Parasitology, 124, 346-349.
      Cuevas, I. C., Cazzulo, J. J., & Sanchez, D. O. (2003). gp63 homologues in Trypanosoma cruzi: Surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity, 71, 5739-5749.
      da Silva Augusto, L., Moretti, N. S., Ramos, T. C., de Jesus, T. C., Zhang, M., Castilho, B. A., & Schenkman, S. (2015). A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathogens, 11, e1004618.
      Das, A., Morales, R., Banday, M., Garcia, S., Hao, L., Cross, G. A., … Bellofatto, V. (2012). The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism. RNA, 18, 1968-1983.
      Elias, M., Marques-Porto, R., Freymuller, E., & Schenkman, S. (2001). Transcription rate modulation through the Trypanosoma cruzi life cycle occurs in parallel with changes in nuclear organisation. Molecular and Biochemical Parasitology, 112, 79-90.
      Ferreira, L. R., Dossin Fde, M., Ramos, T. C., Freymuller, E., & Schenkman, S. (2008). Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis. Anais da Academia Brasileira de Ciências, 80, 157-166.
      Franco, F. R. S., Paranhos-Bacalla, G. S., Yamauchi, L. M., Yoshida, N., & Da Silveira, J. F. (1993). Characterization of a cDNA clone encoding the carboxy-terminal domain of a 90-kilodalton surface antigen of Trypanosoma cruzi metacyclic trypomastigotes. Infection and Immunity, 61, 4196-4201.
      Frevert, U., Schenkman, S., & Nussenzweig, V. (1992). Stage-specific expression and intracellular shedding of the cell surface trans-sialidase of Trypanosoma cruzi. Infection and Immunity, 60, 2349-2360.
      Fritz, M., Vanselow, J., Sauer, N., Lamer, S., Goos, C., Siegel, T. N., … Kramer, S. (2015). Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Research, 43, 8013-8032.
      Goldenberg, S., & Avila, A. R. (2011). Aspects of Trypanosoma cruzi stage differentiation. Advances in Parasitology, 75, 285-305.
      Guerra-Slompo, E. P., Probst, C. M., Pavoni, D. P., Goldenberg, S., Krieger, M. A., & Dallagiovanna, B. (2012). Molecular characterization of the Trypanosoma cruzi specific RNA binding protein TcRBP40 and its associated mRNAs. Biochemical and Biophysical Research Communications, 420, 302-307.
      Guther, M. L. S., Cardoso de Almeida, M. L., Yoshida, N., & Ferguson, M. A. J. (1992). Structural studies on the glycosylphosphadidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The Journal of Biological Chemistry, 267, 6820-6828.
      Haile, S., & Papadopoulou, B. (2007). Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology, 10, 569-577.
      Hentze, M. W., Castello, A., Schwarzl, T., & Preiss, T. (2018). A brave new world of RNA-binding proteins. Nature Reviews. Molecular Cell Biology, 19, 327-341.
      Hinnebusch, A. G. (2000). Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In N. Sonenberg, J. W. B. Hershey, & M. B. Mathews (Eds.), Translational control of gene expression (pp. 185-243). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
      Huyan, X. H., Lin, Y. P., Gao, T., Chen, R. Y., & Fan, Y. M. (2011). Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. International Immunopharmacology, 11, 1293-1297.
      Jeacock, L., Faria, J., & Horn, D. (2018). Codon usage bias controls mRNA and protein abundance in trypanosomatids. eLife, 7, e32496.
      Joyce, B. R., Queener, S. F., Wek, R. C., & Sullivan, W. J., Jr. (2010). Phosphorylation of eukaryotic initiation factor-2α promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 107, 17200-17205.
      Kashiwagi, K., Takahashi, M., Nishimoto, M., Hiyama, T. B., Higo, T., Umehara, T., … Yokoyama, S. (2016). Crystal structure of eukaryotic translation initiation factor 2B. Nature, 531, 122-125.
      Kolev, N. G., Ramey-Butler, K., Cross, G. A., Ullu, E., & Tschudi, C. (2012). Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science, 338, 1352-1353.
      Kramer, S. (2012). Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Molecular and Biochemical Parasitology, 181, 61-72.
      Kramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J. D., Clayton, C., & Carrington, M. (2008). Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2α phosphorylation at Thr169. Journal of Cell Science, 121, 3002-3014.
      Krishnamoorthy, T., Pavitt, G. D., Zhang, F., Dever, T. E., & Hinnebusch, A. G. (2001). Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Molecular and Cellular Biology, 21, 5018-5030.
      Kulkarni, M. M., Olson, C. L., Engman, D. M., & McGwire, B. S. (2009). Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infection and Immunity, 77, 2193-2200.
      Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680-685.
      Lahav, T., Sivam, D., Volpin, H., Ronen, M., Tsigankov, P., Green, A., … Myler, P. J. (2011). Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. The FASEB Journal, 25, 515-525.
      Lander, N., Li, Z. H., Niyogi, S., & Docampo, R. (2015). CRISPR/Cas9-induced disruption of Paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in Flagellar attachment. MBio, 6, e01012.
      Malaga, S., & Yoshida, N. (2001). Targeted reduction in expression of Trypanosoma cruzi surface glycoprotein gp90 increases parasite infectivity. Infection and Immunity, 69, 353-359.
      Markmiller, S., Soltanieh, S., Server, K. L., Mak, R., Jin, W., Fang, M. Y., … Yeo, G. W. (2018). Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 172, 590-604.e513.
      Martinez-Calvillo, S., Vizuet-de-Rueda, J.C., Florencio-Martinez, L.E., Manning-Cela, R.G., & Figueroa-Angulo, E.E. (2010). Gene expression in trypanosomatid parasites. Journal of Biomedicine & Biotechnology, 2010, 525241.
      McDowell, M. A., Ransom, D. M., & Bangs, J. D. (1998). Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. The Biochemical Journal, 335, 681-689.
      Medina-Acosta, E., & Cross, G. A. M. (1993). Rapid isolation of DNA from trypanosomatid protozoa using a simple ‘mini-prep’ procedure. Molecular and Biochemical Parasitology, 59, 327-330.
      Moon, S., Siqueira-Neto, J. L., Moraes, C. B., Yang, G., Kang, M., Freitas-Junior, L. H., & Hansen, M. A. (2014). An image-based algorithm for precise and accurate high throughput assessment of drug activity against the human parasite Trypanosoma cruzi. PLoS One, 9, e87188.
      Moraes, M. C., Jesus, T. C., Hashimoto, N. N., Dey, M., Schwartz, K. J., Alves, V. S., … Castilho, B. A. (2007). Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryotic Cell, 6, 1979-1991.
      Moretti, N. S., & Schenkman, S. (2013). Chromatin modifications in trypanosomes due to stress. Cellular Microbiology, 15, 709-717.
      Mucci, J., Lantos, A. B., Buscaglia, C. A., Leguizamon, M. S., & Campetella, O. (2016). The Trypanosoma cruzi surface, a nanoscale patchwork quilt. Trends in Parasitology, 33, 102-112.
      Mugo, E., & Clayton, C. (2017). Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathogens, 13, e1006560.
      Opperdoes, F. R., & Borst, P. (1977). Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: The glycosome. FEBS Letters, 80, 360-364.
      Pacheco-Lugo, L., Díaz-Olmos, Y., Sáenz-García, J., Probst, C. M., & DaRocha, W. D. (2017). Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitology International, 66(3), 236-239.
      Palam, L. R., Baird, T. D., & Wek, R. C. (2011). Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. The Journal of Biological Chemistry, 286, 10939-10949.
      Palenchar, J. B., & Bellofatto, V. (2006). Gene transcription in trypanosomes. Molecular and Biochemical Parasitology, 146, 135-141.
      Pavitt, G. D., Ramaiah, K. V., Kimball, S. R., & Hinnebusch, A. G. (1998). eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes & Development, 12, 514-526.
      Pereira, M., Malvezzi, A. M., Nascimento, L. M., da Costa Lima, T. D., Alves, V. S., Palma, M. L., … de Melo Neto, O. P. (2013). The eIF4E subunits of two distinct trypanosomatid eIF4F complexes are subjected to differential post-translational modifications associated to distinct growth phases in culture. Molecular and Biochemical Parasitology, 190, 82-86.
      Perez-Diaz, L., Correa, A., Moretao, M. P., Goldenberg, S., Dallagiovanna, B., & Garat, B. (2012). The overexpression of the trypanosomatid-exclusive TcRBP19 RNA-binding protein affects cellular infection by Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 107, 1076-1079.
      Piacenza, L., Alvarez, M. N., Peluffo, G., & Radi, R. (2009). Fighting the oxidative assault: The Trypanosoma cruzi journey to infection. Current Opinion in Microbiology, 12, 415-421.
      Radio, S., Fort, R. S., Garat, B., Sotelo-Silveira, J., & Smircich, P. (2018). UTRme: A scoring-based tool to annotate untranslated regions in Trypanosomatid genomes. Frontiers in Genetics, 9, 671.
      Radío, S., Garat, B., Sotelo-Silveira, J., & Smircich, P. (2020). Upstream ORFs influence translation efficiency in the parasite Trypanosoma cruzi. Frontiers in Genetics, 11, 166.
      Ramirez, M. I., Yamauchi, L. M., de Freitas, L. H., Jr., Uemura, H., & Schenkman, S. (2000). The use of the green fluorescent protein to monitor and improve transfection in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 111, 235-240.
      Rao, S. J., Meleppattu, S., & Pal, J. K. (2016). A GCN2-like eIF2alpha kinase (LdeK1) of Leishmania donovani and its possible role in stress response. PLoS One, 11, e0156032.
      Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276-277.
      Rodrigues, J. P. F., Sant'ana, G. H. T., Juliano, M. A., & Yoshida, N. (2017). Inhibition of host cell lysosome spreading by Trypanosoma cruzi Metacyclic stage-specific surface molecule gp90 downregulates parasite invasion. Infection and Immunity, 85(9), e00302-17.
      Romagnoli, B. A. A., Holetz, F. B., Alves, L. R., & Goldenberg, S. (2020). RNA binding proteins and gene expression regulation in Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 10, 56.
      Rubin-de-Celis, S. S., Uemura, H., Yoshida, N., & Schenkman, S. (2006). Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cellular Microbiology, 8, 1888-1898.
      Schuller, A. P., Wu, C. C., Dever, T. E., Buskirk, A. R., & Green, R. (2017). eIF5A functions globally in translation elongation and termination. Molecular Cell, 66, 194-205 e195.
      Schwede, A., Kramer, S., & Carrington, M. (2012). How do trypanosomes change gene expression in response to the environment? Protoplasma, 249, 223-238.
      Smircich, P., Eastman, G., Bispo, S., Duhagon, M. A., Guerra-Slompo, E. P., Garat, B., … Sotelo-Silveira, J. R. (2015). Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics, 16, 443.
      Sonenberg, N., & Hinnebusch, A. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell, 136, 731-745.
      Souza, W. (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 104(Suppl 1), 89-100.
      Suzuki, E., Tanaka, A. K., Toledo, M. S., Takahashi, H. K., & Straus, A. H. (2002). Role of beta-D-galactofuranose in Leishmania major macrophage invasion. Infection and Immunity, 70, 6592-6596.
      Suzuki, E., Toledo, M. S., Takahashi, H. K., & Straus, A. H. (1997). A monoclonal antibody directed to terminal residue of beta-galactofuranose of a glycolipid antigen isolated from Paracoccidioides brasiliensis: Cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology, 7, 463-468.
      Teixeira, M. M. G., & Yoshida, N. (1986). Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Molecular and Biochemical Parasitology, 18, 271-282.
      Tonelli, R. R., Augusto, L.d. S., Castilho, B. A., & Schenkman, S. (2011). Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One, 6, e27094.
      Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., … Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731-740.
      Umaer, K., & Williams, N. (2015). Kinetoplastid specific RNA-protein interactions in Trypanosoma cruzi ribosome biogenesis. PLoS One, 10, e0131323.
      Vizcaino, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I., … Hermjakob, H. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Research, 44, 11033.
      Yoshida, N., Blanco, S. A., Araguth, M. F., Russo, M., & Gonzalez, J. (1990). The stage-specific 90-kilodalton surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 39, 39-46.
      Zhang, M., Joyce, B. R., Sullivan, W. J., Jr., & Nussenzweig, V. (2013). Translational control in Plasmodium and Toxoplasma parasites. Eukaryotic Cell, 12, 161-167.
      Zinoviev, A., & Shapira, M. (2012). Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids. Comparative and Functional Genomics, 2012, 813718.
    • Grant Information:
      203134/Z/16/Z United Kingdom WT_ Wellcome Trust
    • Contributed Indexing:
      Keywords: Trypanosoma cruzi; differentiation; eIF2; phosphorylation; translation; virulence
    • Accession Number:
      0 (Eukaryotic Initiation Factor-2)
      0 (Proteome)
      0 (Protozoan Proteins)
    • Publication Date:
      Date Created: 20200630 Date Completed: 20210730 Latest Revision: 20221005
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/cmi.13243
    • Accession Number:
      32597009