Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exposure levels to PM 2.5 and black carbon for people with disabilities in rural homes of Colombia.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • Publication Information:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • Subject Terms:
    • Abstract:
      Indoor exposure to air pollutants emitted by solid fuels used for cooking or heating homes remains as a problem to solve. The most affected people are newborns, mothers, children, and people with disabilities, due to the time they spend at home. This study is the first in a rural area of South America, which measures indoor air pollutants (PM 2.5 and black carbon) in different environments, inhabited by people with disabilities. The research was supported through a sociodemographic characterization, a methodology useful for future studies, continuous monitoring for 72 h of pollutants, and emission sources, cooking habits, and pre-existing diseases were identified. The primary sources of emissions are improved wood-burning stoves and their chimney. In households where firewood is used, the average concentrations of PM 2.5 were the highest (between 10.9 and 3302.5 μg/m 3 ), as were the average concentrations of BC (average 72 h between 2.6 and 51.2 μg/m 3 ) compared with the houses that use gas (average 72 h between 2.6 and 6 μg/m 3 ). In 57% of the households visited, the World Health Organization (WHO) guidelines for PM 2.5 (25 μg/m 3 for 24 h) were exceeded. The results reveal that rural concentrations of BC can be up to 2.5 times higher than those of an urban area with high vehicular traffic and high population density and could be used to establish a baseline that allows the implementation of control mechanisms to reduce pollution of indoor air.
    • References:
      Alnes, L. W., Mestl, H. E., Berger, J., Zhang, H., Wang, S., Dong, Z., & Aunan, K. (2014). Indoor PM and CO concentrations in rural Guizhou, China. Energy for Sustainable Development, 21(1), 51–59. https://doi.org/10.1016/j.esd.2014.05.004 . (PMID: 10.1016/j.esd.2014.05.004)
      Amaral, S. S., de Carvalho, J. A., Costa, M. A., & Pinheiro, C. (2015). An overview of particulate matter measurement instruments. Atmosphere, 6(9), 1327–1345. https://doi.org/10.3390/atmos6091327 . (PMID: 10.3390/atmos6091327)
      Amegah, A. K., & Jaakkola, J. J. (2016). Household air pollution and the sustainable development goals. Bulletin of the World Health Organization, 94(3), 215–221. https://doi.org/10.2471/BLT.15.155812 . (PMID: 10.2471/BLT.15.155812)
      Ana, G., Adeniji, B., Ige, O., Oluwole, O., & Olopade, C. (2013). Exposure to emissions from firewood cooking stove and the pulmonary health of women in Olorunda community, Ibadan, Nigeria. Air Quality, Atmosphere and Health, 6(2), 465–471. https://doi.org/10.1007/s11869-012-0183-6 . (PMID: 10.1007/s11869-012-0183-6)
      Ansari, F. A., Khan, A. H., Patel, D. K., Siddiqui, H., Sharma, S., Ashquin, M., & Ahmad, I. (2010). Indoor exposure to respirable particulate matter and particulate-phase PAHs in rural homes in North India. Environmental Monitoring and Assessment, 170(1-4), 491–497. https://doi.org/10.1007/s10661-009-1249-2 . (PMID: 10.1007/s10661-009-1249-2)
      Arora, P., Jain, S., & Sachdeva, K. (2013). Physical characterization of particulate matter emitted from wood combustion in improved and traditional cookstoves. Energy for Sustainable Development, 17(5), 497–503. https://doi.org/10.1016/j.esd.2013.06.003 . (PMID: 10.1016/j.esd.2013.06.003)
      Barraza, F., Jorquera, H., Valdivia, G., & Montoya, L. D. (2014). Indoor PM2.5 in Santiago, Chile, spring 2012: Source apportionment and outdoor contributions. Atmospheric Environment, 94, 692–700. https://doi.org/10.1016/j.atmosenv.2014.06.014 . (PMID: 10.1016/j.atmosenv.2014.06.014)
      Barría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/j.rchipe.2016.04.007 . (PMID: 10.1016/j.rchipe.2016.04.007)
      Bartington, S. E., Bakolis, I., Devakumar, D., Kurmi, O. P., Gulliver, J., Chaube, G., Manandhar, D. S., Saville, N. M., Costello, A., Osrin, D., Hansell, A. L., & Ayres, J. G. (2017). Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environmental Pollution, 220, 38–45. https://doi.org/10.1016/j.envpol.2016.08.074 . (PMID: 10.1016/j.envpol.2016.08.074)
      Bruce, N., Perez-Padilla, R., & Albalak, R. (2000). Indoor air pollution in developing countries: a major environmental and public health challenge. Environmental Health, 78(9), 15. https://doi.org/10.1590/S0042-96862000000900004 . (PMID: 10.1590/S0042-96862000000900004)
      Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., & Dora, C. (2015). WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure-risk functions. Atmospheric Environment, 106, 451–457. https://doi.org/10.1016/j.atmosenv.2014.08.064 . (PMID: 10.1016/j.atmosenv.2014.08.064)
      Cai, J., Yan, B., Kinney, P. L., Perzanowski, M. S., Jung, K. H., Li, T., Xiu, G., Zhang, D., Olivo, C., Ross, J., Miller, R. L., & Chillrud, S. N. (2013). Optimization approaches to ameliorate humidity and vibration related issues using the MicroAeth black carbon monitor for personal exposure measurement. Aerosol Science and Technology, 47(11), 1196–1204. https://doi.org/10.1080/02786826.2013.829551 . (PMID: 10.1080/02786826.2013.829551)
      Canha, N., Lage, J., Candeias, S., Alves, C., & Almeida, S. M. (2017). Indoor air quality during sleep under different ventilation patterns. Atmospheric Pollution Research, 8(6), 1132–1142. https://doi.org/10.1016/j.apr.2017.05.004 . (PMID: 10.1016/j.apr.2017.05.004)
      de la Sota, C., Lumbreras, J., Pérez, N., Ealo, M., Kane, M., Youm, I., & Viana, M. (2018). Indoor air pollution from biomass cookstoves in rural Senegal. Energy for Sustainable Development, 43, 224–234. https://doi.org/10.1016/j.esd.2018.02.002 . (PMID: 10.1016/j.esd.2018.02.002)
      District Secretary for the Environment of Bogota. (2020). Monthly Air Quality Report of Bogota (February). (In Spanish). http://rmcab.ambientebogota.gov.co/home/text/1518 . Accessed 26 March 2020.
      Fullerton, D. G., Bruce, N., & Gordon, S. B. (2008). Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(9), 843–851. https://doi.org/10.1016/j.trstmh.2008.05.028 . (PMID: 10.1016/j.trstmh.2008.05.028)
      Hagler, G. S., Yelverton, T. L., Vedantham, R., Hansen, A. D., & Turner, J. R. (2011). Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol and Air Quality Research, 11(5), 539–546. https://doi.org/10.4209/aaqr.2011.05.0055 . (PMID: 10.4209/aaqr.2011.05.0055)
      Hankey, S., Sullivan, K., Kinnick, A., Koskey, A., Grande, K., Davidson, J. H., & Marshall, J. D. (2015). Using objective measures of stove use and indoor air quality to evaluate a cookstove intervention in rural Uganda. Energy for Sustainable Development, 25, 67–74. https://doi.org/10.1016/j.esd.2014.12.007 . (PMID: 10.1016/j.esd.2014.12.007)
      Huang, Y., Du, W., Chen, Y., Shen, G., Su, S., Lin, N., et al. (2017). Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China. Environmental Pollution, 231, 635–643. https://doi.org/10.1016/j.envpol.2017.08.063 . (PMID: 10.1016/j.envpol.2017.08.063)
      Institute for Health Metrics and Evaluation. (2017). Global Burden of Disease. http://ghdx.healthdata.org/gbd-results-tool . Accessed 4 Oct 2019.
      Kar, A., Rehman, I. H., Burney, J., Puppala, S. P., Suresh, R., Singh, L., Singh, V. K., Ahmed, T., Ramanathan, N., & Ramanathan, V. (2012). Real-time assessment of black carbon pollution in Indian households due to traditional and improved biomass cookstoves. Environmental Science and Technology, 46(5), 2993–3000. https://doi.org/10.1021/es203388g . (PMID: 10.1021/es203388g)
      Kondo, M. C., Mizes, C., Lee, J., & Burstyn, I. (2014). Black carbon concentrations in a goods-movement neighborhood of Philadelphia, PA. Environmental Monitoring and Assessment, 186(7), 4605–4618. https://doi.org/10.1007/s10661-014-3723-8 . (PMID: 10.1007/s10661-014-3723-8)
      Li, T., Cao, S., Fan, D., Zhang, Y., Wang, B., Zhao, X., Leaderer, B. P., Shen, G., Zhang, Y., & Duan, X. (2016). Household concentrations and personal exposure of PM2.5among urban residents using different cooking fuels. Science of the Total Environment, 548–549, 6–12. https://doi.org/10.1016/j.scitotenv.2016.01.038 . (PMID: 10.1016/j.scitotenv.2016.01.038)
      Li, Q., Jiang, J., Wang, S., Rumchev, K., Mead-Hunter, R., Morawska, L., & Hao, J. (2017). Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Science of the Total Environment, 576, 347–361. https://doi.org/10.1016/j.scitotenv.2016.10.080 . (PMID: 10.1016/j.scitotenv.2016.10.080)
      Li, L., Yang, A., He, X., Liu, J., Ma, Y., Niu, J., & Luo, B. (2020). Indoor air pollution from solid fuels and hypertension: A systematic review and meta-analysis. Environmental Pollution, 259, 113914. https://doi.org/10.1016/j.envpol.2020.113914 . (PMID: 10.1016/j.envpol.2020.113914)
      Local Mayor of Usme. (2017). Local Environmental Plan of Usme 2017-2020. (14), 29. (In spanish). http://ambientebogota.gov.co/documents/10157/2883158/PAL+San+Cristóbal+2013-2016.pdf . Accessed 26 Jan 2019.
      Martins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42(July), 259–275. https://doi.org/10.1016/j.scs.2018.07.011 . (PMID: 10.1016/j.scs.2018.07.011)
      McNamara, M. L., Noonan, C. W., & Ward, T. J. (2011). Correction factor for continuous monitoring of wood smoke fine particulate matter. Aerosol and Air Quality Research, 11(3), 315–322. https://doi.org/10.4209/aaqr.2010.08.0072.Correction . (PMID: 10.4209/aaqr.2010.08.0072.Correction)
      McNamara, M. L., Thornburg, J., Semmens, E. O., Ward, T. J., & Noonan, C. W. (2017). Reducing indoor air pollutants with air filtration units in wood stove homes. Science of the Total Environment, 592, 488–494. https://doi.org/10.1016/j.scitotenv.2017.03.111 . (PMID: 10.1016/j.scitotenv.2017.03.111)
      Ministry of environment and sustainable development. (2012). National diagnosis of environmental health. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnostico%20de%20salud%20Ambiental%20compilado.pdf . Accessed 5 Feb 2019.
      Montoya-Rendon, M., Zapata-Saldarriaga, P., & Correa-Ochoa, M. (2013). Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia. Rev salud, 15(1), 103–115. https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/38466#textoCompletoHTML . Accessed 20 Feb 2019.
      Muala, A., Rankin, G., Sehlstedt, M., Unosson, J., Bosson, J. A., Behndig, A., Pourazar, J., Nyström, R., Pettersson, E., Bergvall, C., Westerholm, R., Jalava, P. I., Happo, M. S., Uski, O., Hirvonen, M. R., Kelly, F. J., Mudway, I. S., Blomberg, A., Boman, C., & Sandström, T. (2015). Acute exposure to wood smoke from incomplete combustion - indications of cytotoxicity. Particle and Fibre Toxicology, 12(1), 1–14. https://doi.org/10.1186/s12989-015-0111-7 . (PMID: 10.1186/s12989-015-0111-7)
      Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: A review. Inhalation Toxicology, 19(1), 67–106. https://doi.org/10.1080/08958370600985875 . (PMID: 10.1080/08958370600985875)
      Northcross, A. L., Katharine Hammond, S., Canuz, E., & Smith, K. R. (2012). Dioxin inhalation doses from wood combustion in indoor cookfires. Atmospheric Environment, 49, 415–418. https://doi.org/10.1016/j.atmosenv.2011.11.054 . (PMID: 10.1016/j.atmosenv.2011.11.054)
      Ochieng, C. A., Vardoulakis, S., & Tonne, C. (2016). Indoor air pollution in developing countries. En Household Air Pollution in Low and Middle Income Countries, 1, 547–553. https://doi.org/10.1093/acrefore/9780199389414.013.25 . (PMID: 10.1093/acrefore/9780199389414.013.25)
      Parajuli, I., Lee, H., & Shrestha, K. R. (2016). Indoor Air Quality and ventilation assessment of rural mountainous households of Nepal. International Journal of Sustainable Built Environment, 5(2), 301–311. https://doi.org/10.1016/j.ijsbe.2016.08.003 . (PMID: 10.1016/j.ijsbe.2016.08.003)
      Pattinson, W., Targino, A. C., Gibson, M. D., Krecl, P., Cipoli, Y., & Sá, V. (2018). Quantifying variation in occupational air pollution exposure within a small metropolitan region of Brazil. Atmospheric Environment, 182, 138–154. https://doi.org/10.1016/j.atmosenv.2018.03.011 . (PMID: 10.1016/j.atmosenv.2018.03.011)
      Penney, D., Benignus, V., Kephalopoulos, S., Kotzias, D., Kleinman, M., & Verrier, A. (2010). Guidelines for indoor air quality. WHO Guidelines, 9, 454. https://doi.org/10.1186/2041-1480-2-S2-I1 . (PMID: 10.1186/2041-1480-2-S2-I1)
      Raysoni, A. U., Armijos, R. X., Weigel, M. M., Montoya, T., Eschanique, P., Racines, M., & Li, W. W. (2016). Assessment of indoor and outdoor PM species at schools and residences in a high-altitude Ecuadorian urban center. Environmental Pollution, 214, 668–679. https://doi.org/10.1016/j.envpol.2016.04.085 . (PMID: 10.1016/j.envpol.2016.04.085)
      Rumchev, K., Zhao, Y., & Spickett, J. (2017). Health risk assessment of indoor air quality, socioeconomic and house characteristics on respiratory health among women and children of Tirupur, South India. International Journal of Environmental Research and Public Health, 14(4). https://doi.org/10.3390/ijerph14040429 .
      Rupakheti, D., Kim Oanh, N. T., Rupakheti, M., Sharma, R. K., Panday, A. K., Puppala, S. P., & Lawrence, M. G. (2019). Indoor levels of black carbon and particulate matters in relation to cooking activities using different cook stove-fuels in rural Nepal. Energy for Sustainable Development, 48, 25–33. https://doi.org/10.1016/j.esd.2018.10.007 . (PMID: 10.1016/j.esd.2018.10.007)
      Sambandam, S., Balakrishnan, K., Ghosh, S., Sadasivam, A., Madhav, S., Ramasamy, R., Samanta, M., Mukhopadhyay, K., Rehman, H., & Ramanathan, V. (2015). Can Currently Available Advanced Combustion Biomass Cook-Stoves Provide Health Relevant Exposure Reductions? Results from Initial Assessment of Select Commercial Models in India. EcoHealth, 12, 25–41. https://doi.org/10.1007/s10393-014-0976-1 . (PMID: 10.1007/s10393-014-0976-1)
      Schaap, M., & Denier van der Gon, H. A. (2007). On the variability of Black Smoke and carbonaceous aerosols in the Netherlands. Atmospheric Environment, 41(28), 5908–5920. https://doi.org/10.1016/j.atmosenv.2007.03.042 . (PMID: 10.1016/j.atmosenv.2007.03.042)
      Secretary of government. (2009).Knowing the locality of sumapaz: Diagnosis of the physical, demographic and socioeconomic aspects. Pag. 14. (In spanish). http://www.sdp.gov.co/sites/default/files/documentos/20%20Localidad%20de%20Sumapaz.pdf . Accessed 21 Oct 2018.
      Segalin, B., Gonçalves, F. L., & Fornaro, A. (2016). Black carbon em material particulado nas residências de idosos na região metropolitana de São Paulo, Brasil. Revista Brasileira de Meteorologia, 31(3), 311–318. https://doi.org/10.1590/0102-778631320150145 . (PMID: 10.1590/0102-778631320150145)
      Semmens, E. O., Noonan, C. W., Allen, R. W., Weiler, E. C., & Ward, T. J. (2015). Indoor particulate matter in rural, wood stove heated homes. Environmental Research, 138, 93–100. https://doi.org/10.1016/j.envres.2015.02.005 . (PMID: 10.1016/j.envres.2015.02.005)
      Sharma, D., & Jain, S. (2019). Impact of intervention of biomass cookstove technologies and kitchen characteristics on indoor air quality and human exposure in rural settings of India. Environment International, 123(December 2018), 240–255. https://doi.org/10.1016/j.envint.2018.11.059 . (PMID: 10.1016/j.envint.2018.11.059)
      Sidhu, M. K., Ravindra, K., Mor, S., & John, S. (2017). Household air pollution from various types of rural kitchens and its exposure assessment. Science of the Total Environment, 586, 419–429. https://doi.org/10.1016/j.scitotenv.2017.01.051 . (PMID: 10.1016/j.scitotenv.2017.01.051)
      Solaun, K., Sopelana, A., Arraibi, E., & Pérez, M. (2014). Series CO2: Black Carbon y sus efectos en el clima. Factor CO2. https://www.factorco2.com/comun/docs/131-Series%20CO2_Black%20Carbon_Factor%20CO2_20140613.pdf . Accessed 31 Oct 2019.
      Stockfelt, L., Sallsten, G., Olin, A. C., Almerud, P., Samuelsson, L., Johannesson, S., Molnar, P., Strandberg, B., Almstrand, A. C., Bergemalm-Rynell, K., & Barregard, L. (2012). Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. Inhalation Toxicology, 24(1), 47–59. https://doi.org/10.3109/08958378.2011.633281 . (PMID: 10.3109/08958378.2011.633281)
      Thiering, E., & Heinrich, J. (2015). Epidemiology of air pollution and diabetes. Trends in Endocrinology and Metabolism, 26(7), 384–394. https://doi.org/10.1016/j.tem.2015.05.002 . (PMID: 10.1016/j.tem.2015.05.002)
      TSI. (2014). Operation and Service Manual Dusttrak II aerosol monitor. Revision P/N 6001893. https://tsi.com/getmedia/7c608b93-b6d1-459a-a6a8-2b0e2a55ba91/8530-8531-8532-DustTrak_II-6001893-web?ext=.pdf . Accessed 31 March 2018.
      Verma, T. S., Chimidza, S., & Molefhi, T. (2010). Study of indoor air pollution from household fuels in Gaborone, Botswana. Journal of African Earth Sciences, 58(4), 648–651. https://doi.org/10.1016/j.jafrearsci.2010.07.008 . (PMID: 10.1016/j.jafrearsci.2010.07.008)
      Wang, F., Meng, D., Li, X., & Tan, J. (2016). Indoor-outdoor relationships of PM2.5in four residential dwellings in winter in the Yangtze River Delta, China. Environmental Pollution, 215, 280–289. https://doi.org/10.1016/j.envpol.2016.05.023 . (PMID: 10.1016/j.envpol.2016.05.023)
      World Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization, WHO/SDE/PH(Global update 2005), 5–18. https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=D984E0D32F3FA3C11D9E13E9E8C69736?sequence=1 . Accessed 10 Dec 2018.
      World Health Organization. (2014). Indoor Air Quality Guidelines: Household Fuel Combustion. World Health Organization, 1–172. http://www.who.int/iris/bitstream/10665/141496Summary in 6 languages: http://apps.who.int/iris/handle/10665/144309/http://apps.who.int//iris/bitstream/10665/141496/1/9789241548885_eng.pdf?ua=1 . Accessed 10 Dec 2019.
      Yassin, M. F., AlThaqeb, B. E., & Al-Mutiri, E. A. (2012). Assessment of indoor PM 2.5 in different residential environments. Atmospheric Environment, 56, 65–68. https://doi.org/10.1016/j.atmosenv.2012.03.0 . (PMID: 10.1016/j.atmosenv.2012.03.0)
    • Grant Information:
      GIS_PE01_0518 UNIVERSIDAD EAN
    • Contributed Indexing:
      Keywords: Black carbon; Firewood; Improved cookstoves; Indoor air pollution; PM2.5; Personal exposure assessment
    • Accession Number:
      0 (Air Pollutants)
      0 (Particulate Matter)
      7440-44-0 (Carbon)
    • Publication Date:
      Date Created: 20210107 Date Completed: 20210108 Latest Revision: 20210108
    • Publication Date:
      20240513
    • Accession Number:
      10.1007/s10661-020-08803-3
    • Accession Number:
      33409544