Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification of biological pathways specific to phases preceding rheumatoid arthritis development through gene expression profiling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Pub Country of Publication: England NLM ID: 101232337 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1744-313X (Electronic) Linking ISSN: 17443121 NLM ISO Abbreviation: Int J Immunogenet Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Blackwell Pub., c2005-
    • Subject Terms:
    • Abstract:
      The etiopathogenesis of rheumatoid arthritis is partially understood; however, it is believed to result from a multi-step process. The immune onset followed by pre-clinical phases will eventually lead to the development of symptomatic disease. We aim at identifying differentially expressed genes in order to highlight pathways involved in the pre-clinical stages of rheumatoid arthritis development. The study population consisted of first-degree relatives of patients with rheumatoid arthritis, known to have an increased risk of developing disease as compared to the general population. Whole transcriptome analysis was performed in four groups: asymptomatic without autoantibodies or symptoms associated with possible rheumatoid arthritis (controls); having either clinically suspect arthralgias, undifferentiated arthritis or autoimmunity associated with RA (pre-clinical stages of RA: Pcs-RA); having subsequently developed classifiable RA (pre-RA); and early untreated rheumatoid arthritis patients (RA). Differentially expressed genes were determined, and enrichment analysis was performed. Functional enrichment analysis revealed 31 pathways significantly enriched in differentially expressed genes for Pcs-RA, pre-RA and RA compared to the controls. Osteoclast pathway is among the seven pathways specific for RA. In Pcs-RA and in pre-RA, several enriched pathways include TP53 gene connections, such as P53 and Wnt signalling pathways. Analysis of whole transcriptome for phenotypes related to rheumatoid arthritis allows highlighting which pathways are requested in the pre-clinical stages of disease development. After validation in replication studies, molecules belonging to some of these pathways could be used to identify new specific biomarkers for individuals with impending rheumatoid arthritis.
      (© 2021 John Wiley & Sons Ltd.)
    • References:
      Alpizar-Rodriguez, D., & Finckh, A. (2019). Menopause and possible effect on association between age and anticyclic citrullinated peptide antibodies in women at risk of rheumatoid arthritis. Journal of Rheumatology, 47, 300.
      Alpizar-Rodriguez, D., Lesker, T. R., Gronow, A., Gilbert, B., Raemy, E., Lamacchia, C., & Strowig, T. (2019). Prevotella copri in individuals at risk for rheumatoid arthritis. Annals of the Rheumatic Diseases, 78, 590-593.
      Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-300.
      Bossini-Castillo, L., Villanueva-Martin, G., Kerick, M., Acosta-Herrera, M., López-Isac, E., Simeón, C. P., … Martin, J. (2021). Genomic risk score impact on susceptibility to systemic sclerosis. Annals of the Rheumatic Diseases, 80(1), 118-127. https://doi.org/10.1136/annrheumdis-2020-218558.
      Chamani, G., Shakibi, M. R., Zarei, M. R., Rad, M., Pouyafard, A., Parhizkar, A., & Mansoori, M. (2017). Assessment of relationship between xerostomia and oral health-related quality of life in patients with rheumatoid arthritis". Oral Diseases, 23(8), 1162-1167. https://doi.org/10.1111/odi.12721.
      Dalmasso, C., Broët, P., & Moreau, T. (2005). A simple procedure for estimating the False Discovery Rate. Bioinformatics, 21, 660-668. https://doi.org/10.1093/bioinformatics/bti063.
      de Jong, T. D., Lübbers, J., Turk, S., Vosslamber, S., Mantel, E., Bontkes, H. J., … Verweij, C. L. (2016). The type I interferon signature in leukocyte subsets from peripheral blood of patients with early arthritis: A major contribution by granulocytes. Arthritis Research & Therapy, 18, 165. https://doi.org/10.1186/s13075-016-1065-3.
      Finckh, A., Courvoisier, D., & Lamacchia, C. (2020). Recherche clinique en rhumatismes inflammatoires. Measuring ACPA in the general population or primary care: Is it useful? RMD Open, 6, e001085. https://doi.org/10.1136/rmdopen-2019-001085.
      Finckh, A., & Liang, M. H. (2007). Anti-cyclic citrullinated peptide antibodies in the diagnosis of rheumatoid arthritis: Bayes clears the haze. Annals of Internal Medicine, 146, 816-817. https://doi.org/10.7326/0003-4819-146-11-200706050-00011.
      Gerlag, D. M., Raza, K., van Baarsen, L. G. M., Brouwer, E., Buckley, C. D., Burmester, G. R., … Tak, P. P. (2012). EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: Report from the Study Group for Risk Factors for Rheumatoid Arthritis. Annals of Rheumatic Diseases, 71, 638-641. https://doi.org/10.1136/annrheumdis-2011-200990.
      Hilliquin, S., Hugues, B., Mitrovic, S., Gossec, L., & Fautrel, B. (2018). Ability of disease-modifying antirheumatic drugs to prevent or delay rheumatoid arthritis onset: A systematic literature review and meta-analysis. Annals of Rheumatic Diseases, 77, 1099-1106. https://doi.org/10.1136/annrheumdis-2017-212612.
      Holers, V. M., Demoruelle, M. K., Kuhn, K. A., Buckner, J. H., Robinson, W. H., Okamoto, Y., Norris, J. M., & Deane, K. D. (2018). Rheumatoid arthritis and the mucosal origins hypothesis: Protection turns to destruction. Nature Reviews Rheumatology, 14, 542-557. https://doi.org/10.1038/s41584-018-0070-0.
      Inoue, T., Hammaker, D., Boyle, D., & Firestein, G. S. (2006). Regulation of JNK by MKK-7 in fibroblast-like synoviocytes. Arthritis & Rheumatology, 54, 2127-2135. https://doi.org/10.1002/art.21919.
      Juarez, M., McGettrick, H. M., Scheel-Toellner, D., Yeo, L., Spengler, J., de Paz, B., … Filer, A. (2016). DKK1 expression by synovial fibroblasts in very early rheumatoid arthritis associates with lymphocyte adhesion in an in vitro flow co-culture system. Arthritis & Research Therapy, 18, 14. https://doi.org/10.1186/s13075-016-0915-3.
      Kim, A., Feng, P. U., Ohkuri, T., Sauers, D., Cohn, Z. J., Chai, J., … Wang, H. (2012). Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease. PLoS One, 7, e35588. https://doi.org/10.1371/journal.pone.0035588.
      Kuroki, Y., Shiozawa, S., Sugimoto, T., Kanatani, M., Kaji, H., Miyachi, A., & Chihara, K. (1994). Constitutive c-fos expression in osteoblastic MC3T3-E1 cells stimulates osteoclast maturation and osteoclastic bone resorption. Clinical and Experimental Immunology, 95, 536-539. https://doi.org/10.1111/j.1365-2249.1994.tb07032.x.
      Lee, E. J., Lilja, S., Li, X., Schäfer, S., Zhang, H., & Benson, M. (2019). Bulk and single cell transcriptomic data indicate that a dichotomy between inflammatory pathways in peripheral blood and arthritic joints complicates biomarker discovery. Cytokine, 127, 154960. https://doi.org/10.1016/j.cyto.2019.154960.
      Li, J., Bushel, P. R., Chu, T. M., & Wolfinger, R. D. (2009). Batch Effects and Noise in Microarray Experiments: Sources and Solutions. John Wiley & Sons Ltd.
      Lories, R. J., Corr, M., & Lane, N. E. (2013). To Wnt or not to Wnt: The bone and joint health dilemma. Nature Reviews Rheumatology, 9, 328-339. https://doi.org/10.1038/nrrheum.2013.25.
      Loutan, L., Alpizar-Rodriguez, D., Courvoisier, D. S., Finckh, A., Mombelli, A., & Giannopoulou, C. (2019). Periodontal status correlates with anti-citrullinated protein antibodies in first-degree relatives of individuals with rheumatoid arthritis. Journal of Clinical Periodontology, 46, 690-698. https://doi.org/10.1111/jcpe.13117.
      Lu, M., Zhu, X., Yang, Z., Zhang, W., Sun, Z., Ji, Q., Chen, X., Zhu, J., Wang, C., & Nie, S. (2019). E3 ubiquitin ligase tripartite motif 7 positively regulates the TLR4-mediated immune response via its E3 ligase domain in macrophages. Molecular Immunology, 109, 126-133. https://doi.org/10.1016/j.molimm.2019.01.015.
      Lübbers, J., Brink, M., van de Stadt, L. A., Vosslamber, S., Wesseling, J. G., van Schaardenburg, D., Rantapää-Dahlqvist, S., & Verweij, C. L. (2013). The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Annals of Rheumatic Diseases, 72, 776-780. https://doi.org/10.1136/annrheumdis-2012-202753.
      Luo, W., & Brouwer, C. (2013). Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics, 29, 1830-1831. https://doi.org/10.1093/bioinformatics/btt285.
      Macías-Segura, N., Castañeda-Delgado, J. E., Bastian, Y., Santiago-Algarra, D., Castillo-Ortiz, J. D., Alemán-Navarro, A. L., … Enciso-Moreno, J. A. (2018). Transcriptional signature associated with early rheumatoid arthritis and healthy individuals at high risk to develop the disease. PLoS One, 13, e0194205. https://doi.org/10.1371/journal.pone.0194205.
      Majka, D. S., & Holers, V. M. (2003). Can we accurately predict the development of rheumatoid arthritis in the preclinical phase? Arthritis & Rheumatology, 48, 2701-2705. https://doi.org/10.1002/art.11224.
      Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., & Groop, L. C. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267-273. https://doi.org/10.1038/ng1180.
      Nakazato, Y., Ito, Y., Naito, S., Tamura, N., & Shimazu, K. (2008). Dysgeusia limited to sweet taste in myasthenia gravis. Internal Medicine, 47, 877-878. https://doi.org/10.2169/internalmedicine.47.0735.
      Negishi-Koga, T., Gober, H.-J., Sumiya, E., Komatsu, N., Okamoto, K., Sawa, S., … Takayanagi, H. (2015). Immune complexes regulate bone metabolism through FcRγ signalling. Nature Communications, 6, 6637. https://doi.org/10.1038/ncomms7637.
      Nielen, M. M., van Schaardenburg, D., Reesink, H. W., van de Stadt, R. J., van der Horst-Bruinsma, I. E., de Koning, M. H. (2006) Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Annals of the Rheumatic Diseases. 65(4), 535-537.
      Nielen, M. M. J., van Schaardenburg, D., Reesink, H. W., van de Stadt, R. J., van der Horst-Bruinsma, I. E., de Koning, M. H. M. T., Habibuw, M. R., Vandenbroucke, J. P., & Dijkmans, B. A. C. (2004). Specific autoantibodies precede the symptoms of rheumatoid arthritis: A study of serial measurements in blood donors. Arthritis & Rheumatology, 50, 380-386. https://doi.org/10.1002/art.20018.
      Olsen, N., Sokka, T., Seehorn, C. L., Kraft, B., Maas, K., Moore, J., & Aune, T. M. (2004). A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Annals of Rheumatic Diseases, 63, 1387-1392. https://doi.org/10.1136/ard.2003.017194.
      R Core Team. (2018). R: A Language and Environment for Statistical Computing. https://www.R-project.org/.
      Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47. https://doi.org/10.1093/nar/gkv007.
      Silman, A. J. (2001). Genetic Factors: Familial Clustering. Oxford University Press.
      Silman, A. J., Hennessy, E., & Ollier, B. (1992). Incidence of rheumatoid arthritis in a genetically predisposed population. British Journal of Rheumatology, 31, 365-368. https://doi.org/10.1093/rheumatology/31.6.365.
      Smolen, J. S., Aletaha, D., Barton, A., Burmester, G. R., Emery, P., Firestein, G. S., … Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4, 18001. https://doi.org/10.1038/nrdp.2018.1.
      Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., … Plenge, R. M. (2012). Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics, 44(5), 483-489. https://doi.org/10.1038/ng.2232.
      Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., … Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102.
      Teixeira, V. H., Olaso, R., Martin-Magniette, M.-L., Lasbleiz, S., Jacq, L., Oliveira, C. R., Hilliquin, P., Gut, I., Cornelis, F., & Petit-Teixeira, E. (2009). Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One, 4, e6803. https://doi.org/10.1371/journal.pone.0006803.
      van Baarsen, L. G. M., Bos, W. H., Rustenburg, F., van der Pouw Kraan, T. C. T. M., Wolbink, G. J. J., Dijkmans, B. A. C., van Schaardenburg, D., & Verweij, C. L. (2010). Gene expression profiling in autoantibody-positive patients with arthralgia predicts development of arthritis. Arthritis & Rheumatology, 62, 694-704. https://doi.org/10.1002/art.27294.
      Wang, M., Wu, J., Guo, Y., Chang, X., & Cheng, T. (2017). The tripartite motif-containing protein 3 on the proliferation and cytokine secretion of rheumatoid arthritis fibroblast-like synoviocytes. Molecular Medicine Reports, 15, 1607-1612.
      Wang, M., Wu, J., Zhou, E., Chang, X., Gan, J., & Cheng, T. (2019). Forkhead box o3a suppresses lipopolysaccharide-stimulated proliferation and inflammation in fibroblast-like synoviocytes through regulating tripartite motif-containing protein 3. Journal of Cell Physiology, 234, 20139-20148. https://doi.org/10.1002/jcp.28615.
      Zhang, T., Li, H., Shi, J., Li, S., Li, M., Zhang, L., … You, X. (2016). p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis & Research Therapy, 18, 271. https://doi.org/10.1186/s13075-016-1161-4.
      Zheng, W., Gu, X., Hu, D., & Hao, Y. (2019). Co-culture with synovial tissue in patients with rheumatoid arthritis suppress cell proliferation by regulating MAPK pathway in osteoblasts. American Journal of Translational Research, 11, 3317-3327.
    • Grant Information:
      3200BO_120639 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
    • Contributed Indexing:
      Keywords: Gene expression profiling; Rheumatoid arthritis development; Transcriptome
    • Accession Number:
      0 (Autoantibodies)
      0 (HLA-DRB1 Chains)
    • Publication Date:
      Date Created: 20210122 Date Completed: 20210819 Latest Revision: 20210819
    • Publication Date:
      20240513
    • Accession Number:
      10.1111/iji.12528
    • Accession Number:
      33480472