Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Discovery of a novel, potent and selective small-molecule inhibitor of PD-1/PD-L1 interaction with robust in vivo anti-tumour efficacy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
    • Publication Information:
      Publication: London : Wiley
      Original Publication: London, Macmillian Journals Ltd.
    • Subject Terms:
    • Abstract:
      Background and Purpose: PD-1/PD-L1 antibodies have achieved great success in clinical treatment. However, monoclonal antibody drugs also have challenges, such as high manufacturing costs, poor diffusion, low oral bioavailability and limited penetration into tumour tissue. The development of small-molecule inhibitors of PD-1/PD-L1 interaction represents a promising perspective to overcome the above challenges in cancer immunotherapy.
      Experimental Approach: We explored structural activity relationships and used biochemical assays to generate a lead compound (ZE132). CD8+ T-cells killing assay and Ifng expression assay were used to verify the in vitro cellular activity of ZE132. Off-target study was performed to verify the selectivity. Syngeneic mouse models were used to verify the in vivo activity of ZE132 in tumour immune microenvironment (TIME). We also performed pharmacokinetics profiling in mice and The Cancer Genome Atlas database analysis.
      Key Results: ZE132 can effectively inhibit the PD-1/PD-L1 interactions in vitro, and it has a potent affinity to PD-L1. ZE132 shows robust anti-tumour effects in vivo, better than anti-PD-1 antibody. In the analysis of TIME, we found that ZE132 treatment promotes cytotoxic T-cell tumour infiltration and induces IL-2 expression. In addition, ZE132 elicits strong inhibitory effects on the mRNA expression of TGF-β, which may serve as a potential biomarker to predict responsiveness to PD-1/PD-L1 immunotherapies.
      Conclusion and Implications: We identified a new lead compound ZE132 targeting PD-1/PD-L1 interactions, not only showing favourable drug-like properties in vitro and in vivo but also showing the advantage of overcoming the barrier of TIME compared to anti-PD-1 antibody.
      (© 2021 The British Pharmacological Society.)
    • References:
      Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Buneman, O. P., Cidlowski, J. A., Christopoulos, A., Davenport, A. P., Fabbro, D., Spedding, M., Striessnig, J., Davies, J. A., … Wong, S. S. (2019). The concise guide to pharmacology 2019/20: Introduction and other protein targets. British Journal of Pharmacology, 176 Suppl 1(Suppl 1), S1-s20. https://doi.org/10.1111/bph.14747.
      Bang, Y. J., Doi, T., Kondo, S., Chung, H. C., Muro, K., Dussault, I., Helwig, C., Osada, M., & Kang, Y. K. (2018). 661P-Updated results from a phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in patients with pretreated recurrent or refractory gastric cancer. Annals of Oncology, 29, viii222-viii223. https://doi.org/10.1093/annonc/mdy282.045.
      Basu, S., Yang, J., Xu, B., Magiera-Mularz, K., Skalniak, L., Musielak, B., Kholodovych, V., Holak, T. A., & Hu, L. (2019). Design, synthesis, evaluation, and structural studies of C(2)-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein-protein interaction. Journal of Medicinal Chemistry, 62(15), 7250-7263. https://doi.org/10.1021/acs.jmedchem.9b00795.
      Batlle, E., & Massagué, J. (2019). Transforming growth factor-β signaling in immunity and cancer. Immunity, 50(4), 924-940. https://doi.org/10.1016/j.immuni.2019.03.024.
      Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H., & Freeman, G. J. (2007). Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity, 27(1), 111-122. https://doi.org/10.1016/j.immuni.2007.05.016.
      Chen, D., Lu, T., Yan, Z., Lu, W., Zhou, F., Lyu, X., Xu, B., Jiang, H., Chen, K., Luo, C., & Zhao, Y. (2019). Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. European Journal of Medicinal Chemistry, 182, 111633-111654. https://doi.org/10.1016/j.ejmech.2019.111633.
      Cheng, B., Ren, Y., Niu, X., Wang, W., Wang, S., Tu, Y., Liu, S., Wang, J., Yang, D., Liao, G., & Chen, J. (2020). Discovery of novel resorcinol dibenzyl ethers targeting the programmed cell death-1/programmed cell death-ligand 1 interaction as potential anticancer agents. Journal of Medicinal Chemistry, 63(15), 8338-8358. https://doi.org/10.1021/acs.jmedchem.0c00574.
      Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153.
      Dangaj, D., Bruand, M., Grimm, A. J., Ronet, C., Barras, D., Duttagupta, P. A., Lanitis, E., Duraiswamy, J., Tanyi, J. L., Benencia, F., Conejo-Garcia, J., Ramay, H. R., Montone, K. T., Powell, D. J., Gimotty, P. A., Facciabene, A., Jackson, D. G., Weber, J. S., Rodig, S. J., … Coukos, G. (2019). Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell, 35(6), 885-900e810. https://doi.org/10.1016/j.ccell.2019.05.004.
      Ganesh, K., & Massagué, J. (2018). TGF-β inhibition and immunotherapy: Checkmate. Immunity, 48(4), 626-628. https://doi.org/10.1016/j.immuni.2018.03.037.
      Ghiotto, M., Gauthier, L., Serriari, N., Pastor, S., Truneh, A., Nunès, J. A., & Olive, D. (2010). PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. International Immunology, 22(8), 651-660. https://doi.org/10.1093/intimm/dxq049.
      Gorbachev, A. V., Kobayashi, H., Kudo, D., Tannenbaum, C. S., Finke, J. H., Shu, S., Farber, J. M., & Fairchild, R. L. (2007). CXC chemokine ligand 9/monokine induced by IFN-gamma production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. Journal of Immunology, 178(4), 2278-2286. https://doi.org/10.4049/jimmunol.178.4.2278.
      Gropper, Y., Feferman, T., Shalit, T., Salame, T. M., Porat, Z., & Shakhar, G. (2017). Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Reports, 20(11), 2547-2555. https://doi.org/10.1016/j.celrep.2017.08.071.
      Guzik, K., Tomala, M., Muszak, D., Konieczny, M., Hec, A., Błaszkiewicz, U., Pustuła, M., Butera, R., Dömling, A., & Holak, T. A. (2019). Development of the inhibitors that target the PD-1/PD-L1 interaction-A brief look at progress on small molecules, peptides and macrocycles. Molecules, 24(11), 2071. https://doi.org/10.3390/molecules24112071.
      Guzik, K., Zak, K. M., Grudnik, P., Magiera, K., Musielak, B., Törner, R., Skalniak, L., Dömling, A., Dubin, G., & Holak, T. A. (2017). Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. Journal of Medicinal Chemistry, 60(13), 5857-5867. https://doi.org/10.1021/acs.jmedchem.7b00293.
      Hu, B., Gilkes, D. M., & Chen, J. (2007). Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Research, 67(18), 8810-8817. https://doi.org/10.1158/0008-5472.Can-07-1140.
      Huck, B. R., Kötzner, L., & Urbahns, K. (2018). Small molecules drive big improvements in immuno-oncology therapies. Angewandte Chemie (International Ed. in English), 57(16), 4412-4428. https://doi.org/10.1002/anie.201707816.
      Hui, E., Cheung, J., Zhu, J., Su, X., Taylor, M. J., Wallweber, H. A., Sasmal, D. K., Huang, J., Kim, J. M., Mellman, I., & Vale, R. D. (2017). T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 355(6332), 1428-1433. https://doi.org/10.1126/science.aaf1292.
      Hwang, S. J., Carlos, G., Chou, S., Wakade, D., Carlino, M. S., & Fernandez-Penas, P. (2016). Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Research, 26(4), 413-416. https://doi.org/10.1097/cmr.0000000000000260.
      Kaplon, H., & Reichert, J. M. (2018). Antibodies to watch in 2018. MAbs, 10(2), 183-203. https://doi.org/10.1080/19420862.2018.1415671.
      Kawamoto, S. A., Thompson, A. D., Coleska, A., Nikolovska-Coleska, Z., Yi, H., & Wang, S. (2009). Analysis of the interaction of BCL9 with β-catenin and development of fluorescence polarization and surface plasmon resonance binding assays for this interaction. Biochemistry, 48(40), 9534-9541. https://doi.org/10.1021/bi900770z.
      Konieczny, M., Musielak, B., Kocik, J., Skalniak, L., Sala, D., Czub, M., Magiera-Mularz, K., Rodriguez, I., Myrcha, M., Stec, M., Siedlar, M., Holak, T. A., & Plewka, J. (2020). Di-bromo-based small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint. Journal of Medicinal Chemistry, 63(19), 11271-11285. https://doi.org/10.1021/acs.jmedchem.0c01260.
      Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178.
      Meyer, C., Cagnon, L., Costa-Nunes, C. M., Baumgaertner, P., Montandon, N., Leyvraz, L., Michielin, O., Romano, E., & Speiser, D. E. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunology, Immunotherapy, 63(3), 247-257. https://doi.org/10.1007/s00262-013-1508-5.
      Miller, M. M., Mapelli, C., Allen, M. P., Bowsher, M. S., Gillis, E. P., Langley, D. R., Mull, E., Poirier, M. A., Sanghvi, N., Sun, L. Q., Tenney, D. J., Yeung, K. S., Zhu, J. L., Gillman, K. W., Zhao, Q., Grant-Young, K. A., Scola, P. M., & Cornelius, L. A. M. (2014). Macrocyclic inhibitors of the PD-1/PD-L1 and CD80(B7-H1)/PD-L1 protein/protein interactions. In Bristol-Myers Squibb company.
      Naidoo, J., Page, D. B., Li, B. T., Connell, L. C., Schindler, K., Lacouture, M. E., Postow, M. A., & Wolchok, J. D. (2015). Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology, 26(12), 2375-2391. https://doi.org/10.1093/annonc/mdv383.
      Ostrand-Rosenberg, S., Beury, D. W., Parker, K. H., & Horn, L. A. (2020). Survival of the fittest: How myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunology, Immunotherapy, 69(2), 215-221. https://doi.org/10.1007/s00262-019-02388-8.
      Patsoukis, N., Brown, J., Petkova, V., Liu, F., Li, L., & Boussiotis, V. A. (2012). Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Science Signaling, 5(230), ra46. https://doi.org/10.1126/scisignal.2002796.
      Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410.
      Perez, H. L., Cardarelli, P. M., Deshpande, S., Gangwar, S., Schroeder, G. M., Vite, G. D., & Borzilleri, R. M. (2014). Antibody-drug conjugates: Current status and future directions. Drug Discovery Today, 19(7), 869-881. https://doi.org/10.1016/j.drudis.2013.11.004.
      Postow, M. A. (2015). Managing immune checkpoint-blocking antibody side effects. American Society of Clinical Oncology Educational Book, 76-83. https://doi.org/10.14694/EdBook_AM.2015.35.76.
      Pulaski, B. A., & Ostrand-Rosenberg, S. (2001). Mouse 4T1 breast tumor model. Current Protocols in Immunology, Chapter 20, Unit 20.22. doi:https://doi.org/10.1002/0471142735.im2002s39.
      Qin, M., Cao, Q., Zheng, S., Tian, Y., Zhang, H., Xie, J., Xie, H., Liu, Y., Zhao, Y., & Gong, P. (2019). Discovery of [1,2,4]triazolo[4,3- a]pyridines as potent inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 interaction. Journal of Medicinal Chemistry, 62(9), 4703-4715. https://doi.org/10.1021/acs.jmedchem.9b00312.
      Sasikumar, P. G., Ramachandra, M., Vadlamani, S., Shrimali, K., & Subbarao, K. (2012). Therapeutic compounds for immunomodulation. In Aurigene Discovery Technologies Limited.
      Sasikumar, P. G., Ramachandra, M., Vadlamani, S. K., Vemula, K. R., Satyam, L. K., Subbarao, K., Shrimali, R. K., & Kandepu, S. (2011). Immunosuppression modulating compounds. In Aurigene discovery technologies limited.
      Sasikumar, P. G., Ramachandra, R. K., Adurthi, S., Dhudashiya, A. A., Vadlamani, S., Vemula, K., Vunnum, S., Satyam, L. K., Samiulla, D. S., Subbarao, K., Nair, R., Shrimali, R., Gowda, N., & Ramachandra, M. (2019). A rationally designed peptide antagonist of the PD-1 signaling pathway as an immunomodulatory agent for cancer therapy. Molecular Cancer Therapeutics, 18(6), 1081-1091. https://doi.org/10.1158/1535-7163.Mct-18-0737.
      Sharpe, A. H., Butte, M. J., & Oyama, S. (2011). Modulators of immunoinhibitory receptor PD-1, and methods of use thereof. In President and fellows of Harvard College.
      Sharpe, A. H., & Pauken, K. E. (2018). The diverse functions of the PD1 inhibitory pathway. Nature Reviews. Immunology, 18(3), 153-167. https://doi.org/10.1038/nri.2017.108.
      Sun, J. Y., Zhang, D., Wu, S., Xu, M., Zhou, X., Lu, X. J., & Ji, J. (2020). Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives. Biomarker Research, 8, 35-45. https://doi.org/10.1186/s40364-020-00212-5.
      Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., Sevillano, M., Ibiza, S., Cañellas, A., Hernando-Momblona, X., Byrom, D., Matarin, J. A., Calon, A., Rivas, E. I., Nebreda, A. R., Riera, A., Attolini, C. S. O., & Batlle, E. (2018). TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538-543. https://doi.org/10.1038/nature25492.
      Taylor, A., Harker, J. A., Chanthong, K., Stevenson, P. G., Zuniga, E. I., & Rudd, C. E. (2016). Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity, 44(2), 274-286. https://doi.org/10.1016/j.immuni.2016.01.018.
      Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 27(4), 450-461. https://doi.org/10.1016/j.ccell.2015.03.001.
      Wang, T., Wu, X., Guo, C., Zhang, K., Xu, J., Li, Z., & Jiang, S. (2019). Development of inhibitors of the programmed cell death-1/programmed cell death-ligand 1 signaling pathway. Journal of Medicinal Chemistry, 62(4), 1715-1730. https://doi.org/10.1021/acs.jmedchem.8b00990.
      Yang, L., & Moses, H. L. (2008). Transforming growth factor beta: Tumor suppressor or promoter? Are host immune cells the answer? Cancer Research, 68(22), 9107-9111. https://doi.org/10.1158/0008-5472.Can-08-2556.
      Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine, 377(25), 2500-2501. https://doi.org/10.1056/NEJMc1713444.
      Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., Dömling, A., Dubin, G., & Holak, T. A. (2015). Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 23(12), 2341-2348. https://doi.org/10.1016/j.str.2015.09.010.
      Zhong, W., Myers, J. S., Wang, F., Wang, K., Lucas, J., Rosfjord, E., Lucas, J., Hooper, A. T., Yang, S., Lemon, L. A., Guffroy, M., May, C., Bienkowska, J. R., & Rejto, P. A. (2020). Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics, 21(1), 2-19. https://doi.org/10.1186/s12864-019-6344-3.
      Zhou, H., Chen, J., Meagher, J. L., Yang, C.-Y., Aguilar, A., Liu, L., Bai, L., Cong, X., Cai, Q., Fang, X., Stuckey, J. A., & Wang, S. (2012). Design of Bcl-2 and Bcl-xL inhibitors with subnanomolar binding affinities based upon a new scaffold. Journal of Medicinal Chemistry, 55(10), 4664-4682. https://doi.org/10.1021/jm300178u.
      Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science Translational Medicine, 8(328), 328rv324. https://doi.org/10.1126/scitranslmed.aad7118.
    • Grant Information:
      18431907100 Science and Technology Commission of Shanghai Municipality; 2018ZX09711002-005 National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China; 2018ZX09711002-004-010 National Science & Technology Major Project "Key New Drug Creation and Manufacturing Program", China; 18JC1413800 Shanghai Science and Technology Commission; 20430713600 Shanghai Science and Technology Commission; 18ZR1403900 Shanghai Science and Technology Commission; 81872724 National Natural Science Foundation of China; 81872895 National Natural Science Foundation of China; 82073682 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: PD-1/PD-L1; TGF-β; immunotherapy; tumour immune microenvironment
    • Accession Number:
      0 (B7-H1 Antigen)
      0 (Programmed Cell Death 1 Receptor)
    • Publication Date:
      Date Created: 20210326 Date Completed: 20210705 Latest Revision: 20220531
    • Publication Date:
      20231215
    • Accession Number:
      10.1111/bph.15457
    • Accession Number:
      33768523