Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Silencing lncRNA-DGCR5 increased trophoblast cell migration, invasion and tube formation, and inhibited cell apoptosis via targeting miR-454-3p/GADD45A axis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yang Y;Yang Y; Shang H; Shang H
  • Source:
    Molecular and cellular biochemistry [Mol Cell Biochem] 2021 Sep; Vol. 476 (9), pp. 3407-3421. Date of Electronic Publication: 2021 May 10.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
    • Publication Information:
      Publication: New York : Springer
      Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
    • Subject Terms:
    • Abstract:
      Long noncoding RNA (lncRNA)-DGCR5 has been recognized as a potential tumor progression regulator, while its expression and specific functions in preeclampsia (PE) development remain unveiled. The expressions of miR-454-3p, lncRNA-DiGeorge syndrome critical region gene 5 (DGCR5) and growth arrest and DNA damage protein-inducible 45A (GADD45A) in placental tissues from PE patients or HTR-8/SVneo cells were assessed by Western blot or qRT-PCR. Dual-luciferase reporter assay determined the binding relations between miR-454-3p and GADD45A and between miR-454-3p and lncRNA-DGCR5. The viability, apoptosis, migration, invasiveness and tube formation of HTR-8/SVneo cell were evaluated using cell counting kit (CCK)-8, Annexin-V/Propidium iodide staining, wound healing, transwell and tube formation assays, respectively. miR-454-3p was low-expressed in PE tissue, and upregulation of miR-454-3p increased viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis. Then, miR-454-3p was found to directly target GADD45A which was high-expressed in PE tissues. Overexpressing GADD45A decreased the viability and inhibited the migration, invasion and tube formation of HTR-8/SVneo cells while enhancing apoptosis, and it neutralized the effect of miR-454-3p upregulation. In turn, miR-454-3p upregulation reversed the effect of GADD45A overexpression. Meanwhile, miR-454-3p could also target lncRNA-DGCR5. Silencing lncRNA-DGCR5 increased miR-454-3p expression and cell viability and promoted migration, invasion and tube formation in HTR-8/SVneo cells while inhibiting apoptosis, and it counteracted the effect of miR-454-3p downregulation. As usual, miR-454-3p downregulation reversed the effect of lncRNA-DGCR5 silencing. To conclude, silencing lncRNA-DGCR5 increased viability, promoted migration, invasion and tube formation, and inhibited apoptosis in HTR-8/SVneo cells by rescuing the inhibition of GADD45A expression caused by miR-454-3p.
      (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ (2016) Pre-eclampsia. Lancet (London, England) 387(10022):999–1011. https://doi.org/10.1016/s0140-6736(15)00070-7. (PMID: 10.1016/s0140-6736(15)00070-7)
      Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science (New York, NY) 308(5728):1592–1594. https://doi.org/10.1126/science.1111726. (PMID: 10.1126/science.1111726)
      Mayrink J, Costa ML, Cecatti JG (2018) Preeclampsia in 2018: revisiting concepts, physiopathology, and prediction. Scientific World J 2018:6268276. https://doi.org/10.1155/2018/6268276. (PMID: 10.1155/2018/6268276)
      Lyall F, Robson SC, Bulmer JN (2013) Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension (Dallas, Tex 1979) 62(6):1046–1054. https://doi.org/10.1161/hypertensionaha.113.01892. (PMID: 10.1161/hypertensionaha.113.01892)
      Whitley GS, Dash PR, Ayling LJ, Prefumo F, Thilaganathan B, Cartwright JE (2007) Increased apoptosis in first trimester extravillous trophoblasts from pregnancies at higher risk of developing preeclampsia. Am J Pathol 170(6):1903–1909. https://doi.org/10.2353/ajpath.2007.070006. (PMID: 10.2353/ajpath.2007.070006175252581899436)
      Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM (2012) Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 33(5):352–359. https://doi.org/10.1016/j.placenta.2012.01.017. (PMID: 10.1016/j.placenta.2012.01.017223413403467099)
      Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M (2018) Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front Immunol 9:2597. https://doi.org/10.3389/fimmu.2018.02597. (PMID: 10.3389/fimmu.2018.02597304832616243063)
      Moser G, Huppertz B (2017) Implantation and extravillous trophoblast invasion: from rare archival specimens to modern biobanking. Placenta 56:19–26. https://doi.org/10.1016/j.placenta.2017.02.007. (PMID: 10.1016/j.placenta.2017.02.007282021825472199)
      Bink DI, Lozano-Vidal N, Boon RA (2019) Long non-coding RNA in vascular disease and aging. ncRNA. https://doi.org/10.3390/ncrna5010026. (PMID: 10.3390/ncrna5010026308939466468806)
      Beermann J, Piccoli MT, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325. https://doi.org/10.1152/physrev.00041.2015. (PMID: 10.1152/physrev.00041.201527535639)
      Zhao W, Ma X, Liu L, Chen Q, Liu Z, Zhang Z, Ma S, Wang Z, Li H, Wang Z, Wu J (2019) SNHG20: a vital lncRNA in multiple human cancers. J Cell Physiol. https://doi.org/10.1002/jcp.28143. (PMID: 10.1002/jcp.28143320487356899543)
      Song X, Luo X, Gao Q, Wang Y, Gao Q, Long W (2017) Dysregulation of LncRNAs in placenta and pathogenesis of preeclampsia. Curr Drug Targets 18(10):1165–1170. https://doi.org/10.2174/1389450118666170404160000. (PMID: 10.2174/138945011866617040416000028382860)
      Luo J, Zhu H, Jiang H, Cui Y, Wang M, Ni X, Ma C (2018) The effects of aberrant expression of LncRNA DGCR5/miR-873-5p/TUSC3 in lung cancer cell progression. Cancer Med 7(7):3331–3341. https://doi.org/10.1002/cam4.1566. (PMID: 10.1002/cam4.15666051201)
      Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94. https://doi.org/10.1186/s12943-017-0663-2. (PMID: 10.1186/s12943-017-0663-2285357675440908)
      Liu X, Mu H, Luo X, Xiao X, Ding Y, Yin N, Deng Q, Qi H (2014) Expression of Gadd45α in human early placenta and its role in trophoblast invasion. Placenta 35(6):370–377. https://doi.org/10.1016/j.placenta.2014.03.020. (PMID: 10.1016/j.placenta.2014.03.02024755561)
      Salvador JM, Brown-Clay JD, Fornace AJ Jr (2013) Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol 793:1–19. https://doi.org/10.1007/978-1-4614-8289-5_1. (PMID: 10.1007/978-1-4614-8289-5_124104470)
      Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM (2001) The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. https://doi.org/10.1081/prg-100104165. (PMID: 10.1081/prg-10010416512044323)
      Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, Lala PK (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res 206(2):204–211. https://doi.org/10.1006/excr.1993.1139. (PMID: 10.1006/excr.1993.11397684692)
      Abou-Kheir W, Barrak J, Hadadeh O, Daoud G (2017) HTR-8/SVneo cell line contains a mixed population of cells. Placenta 50:1–7. https://doi.org/10.1016/j.placenta.2016.12.007. (PMID: 10.1016/j.placenta.2016.12.00728161053)
      Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, CA) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.1262)
      Yang Y, Xi L, Ma Y, Zhu X, Chen R, Luan L, Yan J, An R (2019) The lncRNA small nucleolar RNA host gene 5 regulates trophoblast cell proliferation, invasion, and migration via modulating miR-26a-5p/N-cadherin axis. J Cell Biochem 120(3):3173–3184. https://doi.org/10.1002/jcb.27583. (PMID: 10.1002/jcb.2758330242892)
      Lambert G, Brichant JF, Hartstein G, Bonhomme V, Dewandre PY (2014) Preeclampsia: an update. Acta Anaesthesiol Belg 65(4):137–149. (PMID: 25622379)
      Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D (2019) The role of epigenetics in placental development and the etiology of preeclampsia. Int J Mol Sci. https://doi.org/10.3390/ijms20112837. (PMID: 10.3390/ijms20112837312126046600551)
      McAninch D, Roberts CT, Bianco-Miotto T (2017) Mechanistic insight into long noncoding RNAs and the placenta. Int J Mol Sci. https://doi.org/10.3390/ijms18071371. (PMID: 10.3390/ijms18071371286539935535864)
      Zhang Y, Jin F, Li XC, Shen FJ, Ma XL, Wu F, Zhang SM, Zeng WH, Liu XR, Fan JX, Lin Y, Tian FJ (2017) The YY1-HOTAIR-MMP2 signaling axis controls trophoblast invasion at the maternal-fetal interface. Mol Therapy J Am Soc Gene Therapy 25(10):2394–2403. https://doi.org/10.1016/j.ymthe.2017.06.028. (PMID: 10.1016/j.ymthe.2017.06.028)
      Tao H, Liu X, Liu X, Liu W, Wu D, Wang R, Lv G (2019) LncRNA MEG3 inhibits trophoblast invasion and trophoblast-mediated VSMC loss in uterine spiral artery remodeling. Mol Reprod Dev 86(6):686–695. https://doi.org/10.1002/mrd.23147. (PMID: 10.1002/mrd.2314731066488)
      Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254. https://doi.org/10.1016/j.nbd.2011.12.006. (PMID: 10.1016/j.nbd.2011.12.00622202438)
      Huang H, Yang X, Chen J, Fu J, Chen C, Wen J, Mo Q (2019) lncRNA DGCR5 inhibits the proliferation of colorectal cancer cells by downregulating miR-21. Oncol Lett 18(3):3331–3336. https://doi.org/10.3892/ol.2019.10671. (PMID: 10.3892/ol.2019.10671314528126704315)
      Chen F, Yin S, Zhu J, Liu P, Yang C, Feng Z, Deng Z (2019) lncRNA DGCR5 acts as a tumor suppressor in papillary thyroid carcinoma via sequestering miR-2861. Exp Ther Med 17(1):895–900. https://doi.org/10.3892/etm.2018.7012. (PMID: 10.3892/etm.2018.701230651878)
      Wang XL, Shi M, Xiang T, Bu YZ (2019) Long noncoding RNA DGCR5 represses hepatocellular carcinoma progression by inactivating Wnt signaling pathway. J Cell Biochem 120(1):275–282. https://doi.org/10.1002/jcb.27342. (PMID: 10.1002/jcb.2734230230592)
      Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science (New York, NY) 331(6017):550–553. https://doi.org/10.1126/science.1191138. (PMID: 10.1126/science.1191138)
      Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing MiRNA-LncRNA interactions. Method Mol Biol (Clifton, NJ) 1402:271–286. https://doi.org/10.1007/978-1-4939-3378-5_21. (PMID: 10.1007/978-1-4939-3378-5_21)
      Wang F, Yan J (2018) MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed Pharmacotherapy 107:746–753. https://doi.org/10.1016/j.biopha.2018.08.055. (PMID: 10.1016/j.biopha.2018.08.055)
      Shi Z, She K, Li H, Yuan X, Han X, Wang Y (2019) MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem Biol Interact 298:8–14. https://doi.org/10.1016/j.cbi.2018.10.012. (PMID: 10.1016/j.cbi.2018.10.01230367833)
      Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, Hou N, Pan J, Zhou Z, Wang L, Huang D, Yang J, Liang Y, Li J, Huang H, Jiang L (2019) MiR-454-3p-mediated Wnt/β-catenin signaling antagonists suppression promotes breast cancer metastasis. Theranostics 9(2):449–465. https://doi.org/10.7150/thno.29055. (PMID: 10.7150/thno.29055308092866376193)
      Zuo J, Yu H, Xie P, Liu W, Wang K, Ni H (2019) miR-454-3p exerts tumor-suppressive functions by down-regulation of NFATc2 in glioblastoma. Gene 710:233–239. https://doi.org/10.1016/j.gene.2019.06.008. (PMID: 10.1016/j.gene.2019.06.00831181312)
      Xiong Y, Liebermann DA, Tront JS, Holtzman EJ, Huang Y, Hoffman B, Geifman-Holtzman O (2009) Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. J Cell Physiol 220(3):632–639. https://doi.org/10.1002/jcp.21800. (PMID: 10.1002/jcp.2180019452502)
      Zhan Q (2005) Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 569(1–2):133–143. https://doi.org/10.1016/j.mrfmmm.2004.06.055. (PMID: 10.1016/j.mrfmmm.2004.06.05515603758)
      Geifman-Holtzman O, Xiong Y, Holtzman EJ (2013) Gadd45 stress sensors in preeclampsia. Adv Exp Med Biol 793:121–129. https://doi.org/10.1007/978-1-4614-8289-5_7. (PMID: 10.1007/978-1-4614-8289-5_724104476)
      Liu X, Deng Q, Luo X, Chen Y, Shan N, Qi H (2016) Oxidative stress-induced Gadd45α inhibits trophoblast invasion and increases sFlt1/sEng secretions via p38 MAPK involving in the pathology of pre-eclampsia. J Mater-fetal Neonatal Med 29(23):3776–3785. https://doi.org/10.3109/14767058.2016.1144744. (PMID: 10.3109/14767058.2016.1144744)
      Liu DD, Luo X, Qi HB (2010) Expression changes of the growth arrest and DNA damage 45 alpha gene in placenta in patients with preeclampsia and its clinical significance. Zhonghua Fu Chan Ke Za Zhi 45(11):833–837. (PMID: 21211282)
      Li FH, Han N, Wang Y, Xu Q (2018) Gadd45a knockdown alleviates oxidative stress through suppressing the p38 MAPK signaling pathway in the pathogenesis of preeclampsia. Placenta 65:20–28. https://doi.org/10.1016/j.placenta.2018.03.007. (PMID: 10.1016/j.placenta.2018.03.00729908638)
      Yang F, Zhang W, Li D, Zhan Q (2013) Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem 288(9):6552–6560. https://doi.org/10.1074/jbc.M112.418335. (PMID: 10.1074/jbc.M112.418335233298393585088)
      Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein JN, Pommier Y, Fornace AJ Jr (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19(3):1673–1685. https://doi.org/10.1128/mcb.19.3.1673. (PMID: 10.1128/mcb.19.3.16731002285583961)
      Tan Y, Xiao D, Xu Y, Wang C (2018) Long non-coding RNA DLX6-AS1 is upregulated in preeclampsia and modulates migration and invasion of trophoblasts through the miR-376c/GADD45A axis. Exp Cell Res 370(2):718–724. https://doi.org/10.1016/j.yexcr.2018.07.039. (PMID: 10.1016/j.yexcr.2018.07.03930055134)
    • Contributed Indexing:
      Keywords: GADD45A; LncRNA-DGCR5; MiR-454-3p; Preeclampsia; Trophoblast cell
    • Accession Number:
      0 (Biomarkers)
      0 (Cell Cycle Proteins)
      0 (GADD45A protein, human)
      0 (MIRN454 microRNA, human)
      0 (MicroRNAs)
      0 (RNA, Long Noncoding)
      0 (long noncoding RNA DGCR5, human)
    • Publication Date:
      Date Created: 20210511 Date Completed: 20210906 Latest Revision: 20210906
    • Publication Date:
      20231215
    • Accession Number:
      10.1007/s11010-021-04161-x
    • Accession Number:
      33973132