References: Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017). (PMID: 2854092510.1038/nmicrobiol.2017.58)
Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob. Change Biol. 24, 2239–2261 (2018). (PMID: 10.1111/gcb.14102)
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018). (PMID: 2930198610.1126/science.aam7240)
Fennel, K. & Testa, J. M. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11, 105–130 (2019). (PMID: 10.1146/annurev-marine-010318-095138)
Li, G. et al. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period. Mar. Pollut. Bull. 126, 585–591 (2018). (PMID: 2898611110.1016/j.marpolbul.2017.09.061)
Chen, C.-C., Gong, G.-C. & Shiah, F.-K. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar. Environ. Res. 64, 399–408 (2007). (PMID: 1744853210.1016/j.marenvres.2007.01.007)
Grantham, B. A. et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429, 749–754 (2004). (PMID: 1520190810.1038/nature02605)
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci 2, 199–229 (2010). (PMID: 10.1146/annurev.marine.010908.163855)
Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011). (PMID: 10.1038/ngeo1297)
Gray, J. S., Wu, R. S.-s & Or, Y. Y. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser. 238, 249–279 (2002). (PMID: 10.3354/meps238249)
Wang, B. et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence. Limnol. Oceanogr. 62, 1552–1569 (2017). (PMID: 10.1002/lno.10517)
Flynn, K. J. et al. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change. 2, 510–513 (2012). (PMID: 10.1038/nclimate1489)
Kim, M. et al. Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri. Photosynth. Res. 136, 147–160 (2018). (PMID: 2898012510.1007/s11120-017-0452-1)
Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO 2 emissions scenarios. Science 349, aac4722 (2015). (PMID: 2613898210.1126/science.aac4722)
Brewer, P. G. & Peltzer, E. T. Limits to marine life. Science 324, 347–348 (2009). (PMID: 1937242110.1126/science.1170756)
Rousseaux, C. S. & Gregg, W. W. Interannual variation in phytoplankton primary production at a global scale. Remote Sens. 6, 1–19 (2014). (PMID: 10.3390/rs6010001)
Estrada, M. & Blasco, D. in International symposium on the upwelling areas off Western Africa (Cape Blanco and Benguela) Vol. 1, (eds Bas, C., Margalef, R. & Rubies, P.) 379–402 (Instituto de Investigaciones Pesqueras, 1985).
Gao, K. & Campbell, D. A. Photophysiological responses of marine diatoms to elevated CO 2 and decreased pH: a review. Funct. Plant Biol. 41, 449–459 (2014). (PMID: 3248100410.1071/FP13247)
Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3, 291–315 (2011). (PMID: 10.1146/annurev-marine-120709-142720)
Hopkinson, B. M., Dupont, C. L., Allen, A. E. & Morel, F. M. M. Efficiency of the CO 2 -concentrating mechanism of diatoms. Proc. Natl Acad. Sci. USA 108, 3830–3837 (2011). (PMID: 21321195305402410.1073/pnas.1018062108)
Wu, Y., Gao, K. & Riebesell, U. CO 2 -induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7, s915–s2923 (2010). (PMID: 10.5194/bg-7-2915-2010)
Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth. Res. 109, 281–296 (2011). (PMID: 2132753610.1007/s11120-011-9632-6)
Hennon, G. M. M. et al. Diatom acclimation to elevated CO 2 via cAMP signalling and coordinated gene expression. Nat. Clim. Chang. 5, 761–765 (2015). (PMID: 10.1038/nclimate2683)
Shi, D. et al. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana. Limnol. Oceanogr. 60, 1805–1822 (2015). (PMID: 10.1002/lno.10134)
Hein, M. & Sand-Jensen, K. CO 2 increases oceanic primary production. Nature 388, 526–527 (1997). (PMID: 10.1038/41457)
Gao, K. et al. Rising CO 2 and increased light exposure synergistically reduce marine primary productivity. Nat. Clim. Chang. 2, 519–523 (2012). (PMID: 10.1038/nclimate1507)
Tan, S.-C., Shi, G.-Y., Shi, J.-H., Gao, H.-W. & Yao, X. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008. J. Geophys. Res. Biogeosci. 116, G2 (2011). (PMID: 10.1029/2010JG001456)
Liu, N. et al. Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms. Mar. Environ. Res. 129, 229–235 (2017). (PMID: 2864189410.1016/j.marenvres.2017.05.003)
Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009). (PMID: 10.1016/j.pocean.2009.07.032)
Riebesell, U., Wolf-Gladrow, D. A. & Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251 (1993). (PMID: 10.1038/361249a0)
Hoppe, C. J. M., Holtz, L.-M., Trimborn, S. & Rost, B. Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light. New. Phytol. 207, 159–171 (2015). (PMID: 25708812495029610.1111/nph.13334)
Passow, U. & Laws, E. A. Ocean acidification as one of multiple stressors: growth response of Thalassiosira weissflogii (diatom) under temperature and light stress. Mar. Ecol. Prog. Ser. 541, 75–90 (2015). (PMID: 10.3354/meps11541)
Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO 2 -concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).
Ku, S.-B. & Edwards, G. E. Oxygen inhibition of photosynthesis: I. temperature dependence and relation to O 2 /CO 2 solubility ratio. Plant. Physiol 59, 986–990 (1977). (PMID: 1665998154334610.1104/pp.59.5.986)
Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Chang. 5, 892–897 (2015). (PMID: 10.1038/nclimate2682)
do Rosário Gomes, H. et al. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat. Commun. 5, 4862 (2014). (PMID: 2520378510.1038/ncomms5862)
Gireeshkumar, T. R. et al. Influence of upwelling induced near shore hypoxia on the Alappuzha mud banks, south west coast of India. Cont. Shelf. Res. 139, 1–8 (2017). (PMID: 10.1016/j.csr.2017.03.009)
Steckbauer, A., Klein, S. G. & Duarte, C. M. Additive impacts of deoxygenation and acidification threaten marine biota. Glob. Change Biol. 26, 5602–5612 (2020). (PMID: 10.1111/gcb.15252)
Li, F., Wu, Y., Hutchins, D. A., Fu, F. & Gao, K. Physiological responses of coastal and oceanic diatoms of diurnal fluctuations in seawater carbonate chemistry under two CO 2 concentrations. Biogeosciences 13, 6247–6259 (2016). (PMID: 10.5194/bg-13-6247-2016)
Gao, K. et al. Effects of ocean acidification on marine photosynthetic organisms under concurrent influences of warming, UV radiation, and deoxygenation. Front. Mar. Sci 6, 322 (2019). (PMID: 10.3389/fmars.2019.00322)
Reed, D. C. & Harrison, J. A. Linking nutrient loading and oxygen in the coastal ocean: a new global scale model. Glob. Biogeochem. Cycle 30, 447–459 (2016). (PMID: 10.1002/2015GB005303)
Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future coastal ocean upwelling ecosystems. Glob. Change Biol. 16, 1213–1228 (2010). (PMID: 10.1111/j.1365-2486.2009.02094.x)
Melzner, F. et al. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol. 160, 1875–1888 (2013). (PMID: 10.1007/s00227-012-1954-1)
Baumann, H., Wallace, R. B., Tagliaferri, T. & Gobler, C. J. Large natural pH, CO 2 and O 2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries Coast 38, 220–231 (2015). (PMID: 10.1007/s12237-014-9800-y)
Xiao, W. et al. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea. Prog. Oceanogr. 162, 223–239 (2018). (PMID: 10.1016/j.pocean.2018.03.008)
Gao, K. et al. Solar UV radiation drives CO 2 fixation in marine phytoplankton: a double-edged sword. Plant. Physiol. 144, 54–59 (2007). (PMID: 17494919191377710.1104/pp.107.098491)
Li, J. et al. Spatial and seasonal distributions of bacterioplankton in the Pearl River Estuary: the combined effects of riverine inputs, temperature, and phytoplankton. Mar. Pollut. Bull. 125, 199–207 (2017). (PMID: 2882342310.1016/j.marpolbul.2017.08.026)
Carpenter, J. H. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10, 141–143 (1965). (PMID: 10.4319/lo.1965.10.1.0141)
Kirkwood, D. S., Aminot, A. & Carlberg, S. R. The 1994 QUASIMEME laboratory performance study: Nutrients in seawater and standard solutions. Mar. Pollut. Bull. 32, 640–645 (1996). (PMID: 10.1016/0025-326X(96)00076-8)
Li, X. et al. Production and transformation of dissolved and particulate organic matter as indicated by amino acids in the Pearl River Estuary. China. J. Geophys. Res-Biogeo. 123, 3523–3537 (2018). (PMID: 10.1029/2018JG004690)
Lewis, E. & Wallace, D. W. R. Program Developed for CO 2 System Calculations, ORNL/CDIAC-105. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, US Department of Energy, 1998).
Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006). (PMID: 10.1016/j.marchem.2005.12.001)
Dickson, A. G. in Guide to best practices for ocean acidification research and data reporting (eds Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J.-P.) 17–40 (Publications Office of the European Union, 2010).
Zapata, M., Rodríguez, F. & Garrido, J. L. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C 8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000). (PMID: 10.3354/meps195029)
Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX- a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996). (PMID: 10.3354/meps144265)
Liu, X. et al. Responses of phytoplankton communities to environmental variability in the East China Sea. Ecosystems 19, 832–849 (2016). (PMID: 10.1007/s10021-016-9970-5)
Genty, B., Briantais, J.-M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990, 87–92 (1989). (PMID: 10.1016/S0304-4165(89)80016-9)
Sunda, W. G., Price, N. M. & Morel, F. F. M. in Algal Culturing Techniques (ed. Andersen, R. A) 35–63 (Elsevier Academic Press, 2005).
Björk, M., Haglund, K., Ramazanov, Z. & Pedersén, M. Inducible mechanisms for HCO 3 - utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29, 166–173 (1993). (PMID: 10.1111/j.0022-3646.1993.00166.x)
Hopkinson, B. M., Meile, C. & Shen, C. Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant. Physiol. 162, 1142–1152 (2013). (PMID: 23656892366804510.1104/pp.113.217737)
Brzezinski, M. A. & Nelson, D. M. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res. 42, 1215–1237 (1995).
No Comments.