Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Usefulness of Vaccine Adverse Event Reporting System for Machine-Learning Based Vaccine Research: A Case Study for COVID-19 Vaccines.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
- Publication Information:
Original Publication: Basel, Switzerland : MDPI, [2000-
- Subject Terms:
- Abstract:
Usefulness of Vaccine-Adverse Event-Reporting System (VAERS) data and protocols required for statistical analyses were pinpointed with a set of recommendations for the application of machine learning modeling or exploratory analyses on VAERS data with a case study of COVID-19 vaccines (Pfizer-BioNTech, Moderna, Janssen). A total of 262,454 duplicate reports (29%) from 905,976 reports were identified, which were merged into a total of 643,522 distinct reports. A customized online survey was also conducted providing 211 reports. A total of 20 highest reported adverse events were first identified. Differences in results after applying various machine learning algorithms (association rule mining, self-organizing maps, hierarchical clustering, bipartite graphs) on VAERS data were noticed. Moderna reports showed injection-site-related AEs of higher frequencies by 15.2%, consistent with the online survey (12% higher reporting rate for pain in the muscle for Moderna compared to Pfizer-BioNTech). AEs {headache, pyrexia, fatigue, chills, pain, dizziness} constituted >50% of the total reports. Chest pain in male children reports was 295% higher than in female children reports. Penicillin and sulfa were of the highest frequencies (22%, and 19%, respectively). Analysis of uncleaned VAERS data demonstrated major differences from the above (7% variations). Spelling/grammatical mistakes in allergies were discovered (e.g., ~14% reports with incorrect spellings for penicillin).
- References:
Bioinformatics. 2008 Nov 15;24(22):2643-4. (PMID: 18799482)
Pharmacoepidemiol Drug Saf. 2021 May;30(5):602-609. (PMID: 33533072)
J Am Med Inform Assoc. 2021 Jul 14;28(7):1393-1400. (PMID: 33647938)
PLoS Negl Trop Dis. 2016 Jul 13;10(7):e0004846. (PMID: 27410239)
Vaccine. 2012 Nov 26;30(50):7253-9. (PMID: 23063829)
Drug Saf. 2017 Jul;40(7):571-582. (PMID: 28293864)
Bioinformatics. 2014 Jun 15;30(12):i52-59. (PMID: 24932005)
Analyst. 2014 Mar 7;139(5):943-53. (PMID: 24260774)
FEBS Lett. 1999 May 21;451(2):142-6. (PMID: 10371154)
J Clin Gastroenterol. 2010 Jul;44(6):423-7. (PMID: 19935081)
MMWR Surveill Summ. 2003 Jan 24;52(1):1-24. (PMID: 12825543)
J Allergy Clin Immunol Pract. 2021 Apr;9(4):1423-1437. (PMID: 33388478)
Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907-12. (PMID: 10077610)
Brief Bioinform. 2015 Mar;16(2):216-31. (PMID: 24162173)
World J Gastroenterol. 2015 Aug 21;21(31):9233-8. (PMID: 26309349)
BMC Bioinformatics. 2009 Jan 28;10:36. (PMID: 19173748)
Vaccine. 2015 Aug 26;33(36):4398-405. (PMID: 26209838)
Emerg Infect Dis. 2018 Jul;24(7):1178-1187. (PMID: 29916350)
Clin Infect Dis. 2015 Sep 15;61(6):864-70. (PMID: 26060294)
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):631-8. (PMID: 21709163)
Vaccine. 2020 Nov 3;38(47):7458-7463. (PMID: 33039207)
Vaccine. 2020 Sep 11;38(40):6291-6298. (PMID: 32747215)
Brief Bioinform. 2010 Mar;11(2):210-24. (PMID: 19815645)
Vaccines (Basel). 2022 Jan 11;10(1):. (PMID: 35062764)
Clin Infect Dis. 2015 May 15;60(10):e58-65. (PMID: 25637587)
Vaccines (Basel). 2021 Jan 04;9(1):. (PMID: 33406694)
Hum Vaccin Immunother. 2018;14(8):1963-1969. (PMID: 29580194)
PLoS One. 2012;7(4):e35014. (PMID: 22506062)
Toxicol Rep. 2021 Jun 24;8:1324-1335. (PMID: 34258234)
Vaccine. 2017 Mar 27;35(14):1758-1763. (PMID: 28262331)
Environ Sci Technol. 2011 Feb 15;45(4):1695-702. (PMID: 21250674)
Nutrients. 2019 Jun 05;11(6):. (PMID: 31195638)
Sci Rep. 2016 Oct 03;6:34318. (PMID: 27694888)
NPJ Vaccines. 2019 Sep 24;4:39. (PMID: 31583123)
- Contributed Indexing:
Keywords: COVID-19; VAERS; adverse events; association rule mining; bipartite graphs; hierarchical clustering; self-organizing maps; vaccine analysis workflow; vaccine development
- Accession Number:
0 (COVID-19 Vaccines)
0 (Penicillins)
0 (Vaccines)
- Publication Date:
Date Created: 20220728 Date Completed: 20220729 Latest Revision: 20251031
- Publication Date:
20251031
- Accession Number:
PMC9368306
- Accession Number:
10.3390/ijms23158235
- Accession Number:
35897804
No Comments.