Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Chlorogenic Acid: a Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson's Disease by GLP-1 Secretion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Clifton, NJ : Humana Press, c1987-
    • Subject Terms:
    • Abstract:
      Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3β through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.
      (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • Comments:
      Erratum in: Mol Neurobiol. 2022 Dec;59(12):7544. (PMID: 36239899)
    • References:
      Parkhe A, Parekh P, Nalla LV, Sharma N, Sharma M, Gadepalli A, Kate A, Khairnar A (2020) Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci Lett 716:134652. https://doi.org/10.1016/j.neulet.2019.134652. (PMID: 10.1016/j.neulet.2019.13465231778768)
      Khairnar A, Ruda-Kucerova J, Arab A, Hadjistyllis C, Sejnoha Minsterova A, Shang Q, Chovsepian A et al (2021) Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson’s disease. J Neurochem 158(3):779–797. https://doi.org/10.1111/jnc.15449. (PMID: 10.1111/jnc.1544934107061)
      Borghammer P, Horsager J, Andersen K, Van Den Berge N, Raunio A, Murayama S, Parkkinen L, Myllykangas L (2021) Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol Dis 161:105557. https://doi.org/10.1016/j.nbd.2021.105557. (PMID: 10.1016/j.nbd.2021.10555734763110)
      Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/s0896-6273(03)00568-3. (PMID: 10.1016/s0896-6273(03)00568-312971891)
      Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21. https://doi.org/10.1038/nrdp.2017.13. (PMID: 10.1038/nrdp.2017.13)
      Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110(5):517–536. https://doi.org/10.1007/s00702-002-0808-2. (PMID: 10.1007/s00702-002-0808-212721813)
      Aarsland D, Creese B, Politis M, Chaudhuri K, Weintraub D, Ballard C (2017) Cognitive decline in Parkinson disease. Nat Rev Neurol 13(4):217–231. https://doi.org/10.1038/nrneurol.2017.27. (PMID: 10.1038/nrneurol.2017.27282571285643027)
      Zesiewicz TA, Baker MJ, Wahba M, Hauser RA (2003) Autonomic nervous system dysfunction in Parkinson’s disease. Curr Treat Options Neurol 5(2):149–160. https://doi.org/10.1007/s11940-003-0005-0. (PMID: 10.1007/s11940-003-0005-012628063)
      Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A et al (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163(6):1428–1443. https://doi.org/10.1016/j.cell.2015.10.048. (PMID: 10.1016/j.cell.2015.10.048266380725665753)
      Vaccari C, Grotto D, Pereira TD, de Camargo JL, Lopes LC (2021) GLP-1 and GIP receptor agonists in the treatment of Parkinson’s disease: Translational systematic review and meta-analysis protocol of clinical and preclinical studies. PloS one 16(8):10. https://doi.org/10.1371/journal.pone.0255726. (PMID: 10.1371/journal.pone.0255726)
      Bassil F, Delamarre A, Canron MH, Dutheil N, Vital A, Négrier-Leibreich ML, Bezard E, Fernagut PO et al (2022) Impaired brain insulin signalling in Parkinson’s disease. Neuropathology and applied neurobiology. 48(1):e12760. https://doi.org/10.1111/nan.12760. (PMID: 10.1111/nan.1276034405431)
      Athauda D, Foltynie T (2016) The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov Today 21(5):802–818. https://doi.org/10.1016/j.drudis.2016.01.013. (PMID: 10.1016/j.drudis.2016.01.01326851597)
      Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J, Kortesmaa J, Mercer A, Nielsen E, Rönnholm H, Wikström L (2008) Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J Neurosci Res 86(2):326–338. https://doi.org/10.1002/jnr.21483. (PMID: 10.1002/jnr.2148317803225)
      Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS (2008) Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodentmodels of Parkinson’s disease. J Neuroinflammation 5(1):1–9. https://doi.org/10.1186/1742-2094-5-19. (PMID: 10.1186/1742-2094-5-19)
      Li Y, Liu W, Li L, Hölscher C (2017) D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson’s disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation. Eur J Pharmacol 797:162–172. https://doi.org/10.1016/j.ejphar.2016.11.050. (PMID: 10.1016/j.ejphar.2016.11.05027913104)
      Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Hölscher C (2020) The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of Parkinson’s disease. J Parkinsons Dis 10(2):523–542. https://doi.org/10.3233/jpd-191768. (PMID: 10.3233/jpd-19176831958096)
      Zhang L, Zhang L, Li L, Hölscher C (2019) Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis 9(1):157–171. https://doi.org/10.3233/jpd-181503. (PMID: 10.3233/jpd-18150330741689)
      Hölscher C (2022) Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 179(4):695–714. https://doi.org/10.1111/bph.15508. (PMID: 10.1111/bph.1550833900631)
      McGovern SF, Hunter K, Hölscher C (2012) Effects of the glucagon-like polypeptide-1 analogue (Val8) GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain. Brain Res 473:204–213. https://doi.org/10.1016/j.brainres.2012.07.029. (PMID: 10.1016/j.brainres.2012.07.029)
      Cao B, Zhang Y, Chen J, Wu P, Dong Y, Wang Y (2022) Neuroprotective effects of liraglutide against inflammation through the AMPK/NF-κB pathway in a mouse model of Parkinson’s disease. Metab Brain Dis 37(2):451–462. https://doi.org/10.1007/s11011-021-00879-1. (PMID: 10.1007/s11011-021-00879-134817756)
      Aksoy D, Solmaz V, Çavuşoğlu T, Meral A, Ateş U, Erbaş O (2017) Neuroprotective effects of eexenatide in a rotenone-induced rat modelof Parkinson’s disease. Am J Med Sci 354(3):319–324. https://doi.org/10.1016/j.amjms.2017.05.002. (PMID: 10.1016/j.amjms.2017.05.00228918840)
      Bu LL, Liu YQ, Shen Y, Fan Y, Yu WB, Jiang DL, Tang YL, Yang YJ et al (2021) Neuroprotection of exendin-4 by enhanced autophagy in a Parkinsonian rat model of α-Synucleinopathy. Neurotherapeutics 18(2):962–978. https://doi.org/10.1007/s13311-021-01018-5. (PMID: 10.1007/s13311-021-01018-5337237528423983)
      Vijiaratnam N, Girges C, Auld G, Chau M, Maclagan K, King A, Skene S, Chowdhury K et al (2021) Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson’s disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: the ‘Exenatide-PD3’study. BMJ Open 11(5):e047993. https://doi.org/10.1136/bmjopen-2020-047993. (PMID: 10.1136/bmjopen-2020-047993340499228166598)
      Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, Hibbert S, Budnik N et al (2017) Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 390(10103):1664–1675. https://doi.org/10.1016/s0140-6736(17)31585-4. (PMID: 10.1016/s0140-6736(17)31585-4287811085831666)
      Nauck MA, Friedrich N (2013) Do GLP-1–based therapies increase cancer risk? Diabetes Care 36(Supplement_2):S245–S252. https://doi.org/10.2337/dcs13-2004. (PMID: 10.2337/dcs13-2004238820533920789)
      Mace OJ, Tehan B, Marshall F (2015) Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 3(4):e00155. https://doi.org/10.1002/prp2.155. (PMID: 10.1002/prp2.155262136274506687)
      Khan MZ, He L (2017) The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 113:639–651. https://doi.org/10.1016/j.neuropharm.2015.05.013. (PMID: 10.1016/j.neuropharm.2015.05.01326005184)
      Credle JJ, George JL, Wills J, Duka V, Shah K, Lee YC, Rodriguez O, Simkins T et al (2015) GSK-3β dysregulation contributes to parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ 22(5):838–851. https://doi.org/10.1038/cdd.2014.179. (PMID: 10.1038/cdd.2014.17925394490)
      Sun J, Li H, Jin Y, Yu J, Mao S, Su KP, Ling Z, Liu J (2021) Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav Immun 91:703–715. https://doi.org/10.1016/j.bbi.2020.10.014. (PMID: 10.1016/j.bbi.2020.10.01433148438)
      Park BO, Kim SH, Kong GY, Kim DH, Kwon MS, Lee SU, Kim MO, Cho S et al (2016) Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur J Pharmacol 771:1–9. https://doi.org/10.1016/j.ejphar.2015.12.010. (PMID: 10.1016/j.ejphar.2015.12.01026683635)
      Wang Y, Alkhalidy H, Liu D (2021) The emerging role of polyphenols in the management of type 2 diabetes. Molecules 26(3):703. https://doi.org/10.3390/molecules26030703. (PMID: 10.3390/molecules26030703335728087866283)
      Socała K, Szopa A, Serefko A, Poleszak E, Wlaź P (2020) Neuroprotective effects of coffee bioactive compounds: a review. Int J Mol Sci 22(1):107. https://doi.org/10.3390/ijms22010107. (PMID: 10.3390/ijms220101077795778)
      Guasch-Ferré M, Merino J, Sun Q, Fitó M, Salas-Salvadó J (2017) Dietary polyphenols, Mediterranean diet, prediabetes, and type 2 diabetes: a narrative review of the evidence. Oxid Med Cell Longev 2017:6723931. https://doi.org/10.1155/2017/6723931. (PMID: 10.1155/2017/6723931288839035572601)
      Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3, 4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain. Neurotox Res 17(4):435–439. https://doi.org/10.1007/s12640-009-9125-y. (PMID: 10.1007/s12640-009-9125-y19882200)
      Colombo R, Papetti A (2020) An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr 60(5):760–779. https://doi.org/10.1080/10408398.2018.1550384. (PMID: 10.1080/10408398.2018.155038430614247)
      Yan R, Zhang J, Park HJ, Park ES, Oh S, Zheng H, Junn E, Voronkov M et al (2018) Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson’s disease and DLB. Proc Natl Acad Sci 115(51):E12053–E12062. https://doi.org/10.1073/pnas.1813365115. (PMID: 10.1073/pnas.1813365115305099906304960)
      Fujii Y et al. (2015) Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1 (7–36)) amide in C57BL/6J mice. 4.
      Vauzour D, Corona G, Spencer JP (2010) Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch Biochem Biophys 501(1):106–111. https://doi.org/10.1016/j.abb.2010.03.016. (PMID: 10.1016/j.abb.2010.03.01620361927)
      Sharma D, Tekade RK, Kalia K (2020) Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 76:153235. https://doi.org/10.1016/j.phymed.2020.153235. (PMID: 10.1016/j.phymed.2020.15323532563017)
      Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP (2020) Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a Parkinsonian mouse model. Oxid Med Cell Longev 2020:6571484. https://doi.org/10.1155/2020/6571484. (PMID: 10.1155/2020/6571484325660937273475)
      Takeshita J, Grewal S, Langan SM, Mehta NN, Ogdie A, Van Voorhees AS, Gelfand JM (2017) Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol 76(3):377–390. https://doi.org/10.1016/j.jaad.2016.07.064. (PMID: 10.1016/j.jaad.2016.07.064282127595731650)
      Anderson ME (1985) [70] Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 113:548–555. https://doi.org/10.1016/s0076-6879(85)13073-9. (PMID: 10.1016/s0076-6879(85)13073-9)
      Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A (2019) A cleaning crew: the pursuit of autophagy in Parkinson’s disease. ACS Chem Neurosci 10(9):3914–3926. https://doi.org/10.1021/acschemneuro.9b00244. (PMID: 10.1021/acschemneuro.9b0024431385687)
      Sharma M, Kaur J, Rakshe S, Sharma N, Khunt D, Khairnar A (2022) Intranasal exposure to low-dose rotenone induced alpha-synuclein accumulation and Parkinson’s like symptoms without loss of dopaminergic neurons. Neurotox Res 40(1):215–229. https://doi.org/10.1007/s12640-021-00436-9. (PMID: 10.1007/s12640-021-00436-934817799)
      Altarche-Xifro W, Di Vicino U, Muñoz-Martin MI, Bortolozzi A, Bové J, Vila M, Cosma MP (2016) Functional rescue of dopaminergic neuron loss in Parkinson’s disease mice after transplantation of hematopoietic stem and progenitor cells. EBioMedicine. 8:83–95. https://doi.org/10.1016/j.ebiom.2016.04.016. (PMID: 10.1016/j.ebiom.2016.04.016274284214919540)
      Jewett M, Jimenez-Ferrer I, Swanberg M (2017) Astrocytic expression of GSTA4 is associated to dopaminergic neuroprotection in a rat 6-OHDA model of Parkinson’s disease. Brain Sci 7(7):73. https://doi.org/10.3390/brainsci7070073. (PMID: 10.3390/brainsci70700735532586)
      Ip CW, Cheong D, Volkmann J (2017) Stereological estimation of dopaminergic neuron number in the mouse substantia nigra using the optical fractionator and standard microscopy equipment. J Vis Exp (127):e56103.  https://doi.org/10.3791/56103.
      Maurer SV, Kong C, Terrando N, Williams CL (2021) Dietary choline protects against cognitive decline after surgery in mice. Front Cell Neurosci 15:671506. https://doi.org/10.3389/fncel.2021.671506. (PMID: 10.3389/fncel.2021.671506349701198712952)
      Farrand AQ, Verner RS, McGuire RM, Helke KL, Hinson VK, Boger HA (2020) Differential effects of vagus nerve stimulation paradigms guide clinical development for Parkinson’s disease. Brain Stimul 13(5):1323–1332. https://doi.org/10.1016/j.brs.2020.06.078. (PMID: 10.1016/j.brs.2020.06.07832629028)
      Socała K, Szopa A, Serefko A, Poleszak E, Wlaź P (2020) Neuroprotective effects of coffee bioactive compounds: a review. Int J Mol Sci 22(1):107. https://doi.org/10.3390/ijms22010107. (PMID: 10.3390/ijms220101077795778)
      Grundmann M, Bender E, Schamberger J, Eitner F (2021) Pharmacology of free fatty acid receptors and their allosteric modulators. Int J Mol Sci 22(4):1763. https://doi.org/10.3390/ijms22041763. (PMID: 10.3390/ijms22041763335789427916689)
      Tani T, Nishikawa S, Kato M, Tsuda T (2017) Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci Nutr 5(4):929–933. https://doi.org/10.1002/fsn3.478. (PMID: 10.1002/fsn3.478287480825520870)
      Li AJ, Wang Q, Dinh TT, Simasko SM, Ritter S (2016) Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 310(8):R724–R732. https://doi.org/10.1152/ajpregu.00387.2015. (PMID: 10.1152/ajpregu.00387.2015267918304867408)
      Liu ZH, Li B (2021) Chlorogenic acid and β-glucan from highland barley grain ameliorate β-cell dysfunction via inhibiting apoptosis and improving cell proliferation. Food Funct 12(20):10040–10052. https://doi.org/10.1039/d1fo01532j. (PMID: 10.1039/d1fo01532j34515712)
      Li T, Tu L, Gu R, Yang XL, Liu XJ, Zhang GP, Wang Q, Ren YP et al (2020) Neuroprotection of GLP-1/GIP receptor agonist via inhibition of mitochondrial stress by AKT/JNK pathway in a Parkinson’s disease model. Life Sci 256:117824. https://doi.org/10.1016/j.lfs.2020.117824. (PMID: 10.1016/j.lfs.2020.11782432445758)
      Jalewa J, Sharma MK, Hölscher C (2016) Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY 5Y cells. J Neurochem 139(1):55–67. https://doi.org/10.1111/jnc.13736. (PMID: 10.1111/jnc.1373627412483)
      McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses. 64(4):848–853. https://doi.org/10.1016/j.mehy.2004.03.037. (PMID: 10.1016/j.mehy.2004.03.03715694706)
      Shi A, Li T, Zheng Y, Song Y, Wang H, Wang N, Dong L, Shi H (2021) Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front Pharmacol 12:693048. https://doi.org/10.3389/fphar.2021.693048. (PMID: 10.3389/fphar.2021.693048342763808278021)
      Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S (2015) Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 4(10):718–731. https://doi.org/10.1016/j.molmet.2015.07.008. (PMID: 10.1016/j.molmet.2015.07.008265008434588458)
      Batista AF, Bodart-Santos V, De Felice FG, Ferreira ST (2019) Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs 33(3):209–223. https://doi.org/10.1007/s40263-018-0593-6. (PMID: 10.1007/s40263-018-0593-630511349)
      Teraoka M, Nakaso K, Kusumoto C, Katano S, Tajima N, Yamashita A, Zushi T, Ito S et al (2012) Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J Clin Biochem Nutr 51(2):122–127. https://doi.org/10.3164/jcbn.d-11-00030. (PMID: 10.3164/jcbn.d-11-00030229625303432822)
      Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38(2):413–419. https://doi.org/10.1007/s11064-012-0935-6. (PMID: 10.1007/s11064-012-0935-623184188)
    • Contributed Indexing:
      Keywords: Chlorogenic acid; Coffee polyphenols; GLP-1 secretagogue; Parkinson’s disease
    • Accession Number:
      0 (Amino Acids)
      0 (Coffee)
      0 (Neuroprotective Agents)
      0 (Polyphenols)
      0 (RNA, Messenger)
      0 (Secretagogues)
      0 (alpha-Synuclein)
      03L9OT429T (Rotenone)
      318ADP12RI (Chlorogenic Acid)
      89750-14-1 (Glucagon-Like Peptide 1)
      EC 2.7.11.1 (Glycogen Synthase Kinase 3 beta)
      EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
    • Publication Date:
      Date Created: 20220901 Date Completed: 20221004 Latest Revision: 20221014
    • Publication Date:
      20221213
    • Accession Number:
      10.1007/s12035-022-03005-z
    • Accession Number:
      36048341