Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Machine learning models exploring characteristic single-nucleotide signatures in yellow fever virus.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science
- Subject Terms:
- Abstract:
Yellow fever virus (YFV) is the agent of the most severe mosquito-borne disease in the tropics. Recently, Brazil suffered major YFV outbreaks with a high fatality rate affecting areas where the virus has not been reported for decades, consisting of urban areas where a large number of unvaccinated people live. We developed a machine learning framework combining three different algorithms (XGBoost, random forest and regularized logistic regression) to analyze YFV genomic sequences. This method was applied to 56 YFV sequences from human infections and 27 from non-human primate (NHPs) infections to investigate the presence of genetic signatures possibly related to disease severity (in human related sequences) and differences in PCR cycle threshold (Ct) values (in NHP related sequences). Our analyses reveal four non-synonymous single nucleotide variations (SNVs) on sequences from human infections, in proteins NS3 (E614D), NS4a (I69V), NS5 (R727G, V643A) and six non-synonymous SNVs on NHP sequences, in proteins E (L385F), NS1 (A171V), NS3 (I184V) and NS5 (N11S, I374V, E641D). We performed comparative protein structural analysis on these SNVs, describing possible impacts on protein function. Despite the fact that the dataset is limited in size and that this study does not consider virus-host interactions, our work highlights the use of machine learning as a versatile and fast initial approach to genomic data exploration.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2022 Salgado et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
Front Microbiol. 2019 May 24;10:1079. (PMID: 31178835)
Chem Rev. 2018 Apr 25;118(8):4448-4482. (PMID: 29652486)
Sci Rep. 2019 Dec 31;9(1):20418. (PMID: 31892699)
J Virol. 2019 Dec 12;94(1):. (PMID: 31597773)
PLoS Negl Trop Dis. 2020 Aug 11;14(8):e0008405. (PMID: 32780745)
Nucleic Acids Res. 2003 Jul 1;31(13):3381-5. (PMID: 12824332)
Antiviral Res. 2019 Sep;169:104536. (PMID: 31202975)
Cell Rep. 2019 Jan 8;26(2):438-446.e5. (PMID: 30625326)
Nat Biomed Eng. 2018 Oct;2(10):749-760. (PMID: 31001455)
Bioinformatics. 2006 Jan 15;22(2):195-201. (PMID: 16301204)
Genomics. 2012 Jun;99(6):323-9. (PMID: 22546560)
J Virol. 2009 Jun;83(11):5408-18. (PMID: 19279106)
SLAS Discov. 2020 Dec;25(10):1141-1151. (PMID: 32660307)
Viruses. 2017 Apr 24;9(4):. (PMID: 28441781)
Biochim Biophys Acta Gen Subj. 2020 Apr;1864(4):129521. (PMID: 31931019)
J Biol Chem. 2007 Mar 23;282(12):8873-82. (PMID: 17276984)
Bioinformatics. 2010 Feb 15;26(4):445-55. (PMID: 20053841)
J Virol. 2005 Aug;79(16):10268-77. (PMID: 16051820)
Nat Struct Mol Biol. 2016 Sep;23(9):865-7. (PMID: 27455458)
Lancet Infect Dis. 2001 Aug;1(1):11-20. (PMID: 11871403)
J Virol. 2015 Apr;89(7):3455-70. (PMID: 25568208)
Protein Sci. 2020 Jan;29(1):52-65. (PMID: 31531901)
Rev Saude Publica. 2010 Dec;44(6):1144-9. (PMID: 21109907)
Biochim Biophys Acta Gen Subj. 2019 Oct;1863(10):1480-1497. (PMID: 31121217)
N Engl J Med. 2017 Apr 13;376(15):1397-1399. (PMID: 28273000)
Sci Rep. 2018 Sep 3;8(1):13149. (PMID: 30177847)
Science. 2018 Aug 31;361(6405):894-899. (PMID: 30139911)
Nucleic Acids Res. 2017 Jul 3;45(W1):W241-W246. (PMID: 28383703)
J Biomol Struct Dyn. 2014;32(10):1552-62. (PMID: 23964591)
J Virol. 2008 Jan;82(1):173-83. (PMID: 17942558)
Clin Lab Med. 2010 Mar;30(1):237-60. (PMID: 20513550)
Parasit Vectors. 2020 Feb 19;13(1):90. (PMID: 32075684)
PLoS Pathog. 2020 Aug 7;16(8):e1008699. (PMID: 32764827)
Nature. 2017 Jun 15;546(7658):406-410. (PMID: 28538727)
Annu Rev Microbiol. 1990;44:649-88. (PMID: 2174669)
PLoS Pathog. 2016 Jul 14;12(7):e1005738. (PMID: 27416066)
Genome Med. 2016 Sep 29;8(1):97. (PMID: 27683027)
Gene. 2020 Feb 5;726:144168. (PMID: 31759986)
Lancet Infect Dis. 2017 Nov;17(11):1209-1217. (PMID: 28822780)
Brief Bioinform. 2019 Jul 19;20(4):1160-1166. (PMID: 28968734)
Front Genet. 2019 Mar 27;10:267. (PMID: 30972108)
Antiviral Res. 2008 Apr;78(1):116-24. (PMID: 18061688)
Sci Rep. 2019 Apr 2;9(1):5474. (PMID: 30940867)
- Accession Number:
0 (Nucleotides)
- Publication Date:
Date Created: 20221212 Date Completed: 20221214 Latest Revision: 20230112
- Publication Date:
20250114
- Accession Number:
PMC9744328
- Accession Number:
10.1371/journal.pone.0278982
- Accession Number:
36508435
No Comments.