Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Significant impact of time-of-day variation on metformin pharmacokinetics.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin Springer Verlag
    • Subject Terms:
    • Abstract:
      Aims/hypothesis: The objective was to investigate if metformin pharmacokinetics is modulated by time-of-day in humans using empirical and mechanistic pharmacokinetic modelling techniques on a large clinical dataset. This study also aimed to generate and test hypotheses on the underlying mechanisms, including evidence for chronotype-dependent interindividual differences in metformin plasma and efficacy-related tissue concentrations.
      Methods: A large clinical dataset consisting of individual metformin plasma and urine measurements was analysed using a newly developed empirical pharmacokinetic model. Causes of daily variation of metformin pharmacokinetics and interindividual variability were further investigated by a literature-informed mechanistic modelling analysis.
      Results: A significant effect of time-of-day on metformin pharmacokinetics was found. Daily rhythms of gastrointestinal, hepatic and renal processes are described in the literature, possibly affecting drug pharmacokinetics. Observed metformin plasma levels were best described by a combination of a rhythm in GFR, renal plasma flow (RPF) and organic cation transporter (OCT) 2 activity. Furthermore, the large interindividual differences in measured metformin concentrations were best explained by individual chronotypes affecting metformin clearance, with impact on plasma and tissue concentrations that may have implications for metformin efficacy.
      Conclusions/interpretation: Metformin's pharmacology significantly depends on time-of-day in humans, determined with the help of empirical and mechanistic pharmacokinetic modelling, and rhythmic GFR, RPF and OCT2 were found to govern intraday variation. Interindividual variation was found to be partly dependent on individual chronotype, suggesting diurnal preference as an interesting, but so-far underappreciated, topic with regard to future personalised chronomodulated therapy in people with type 2 diabetes.
      (© 2023. The Author(s).)
    • Comments:
      Comment in: Nat Rev Endocrinol. 2023 Jun;19(6):314. doi: 10.1038/s41574-023-00834-3. (PMID: 37012422)
    • References:
      American Diabetes Association (2020) 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2020. Diabetes Care 43(Supplement 1):S98–S110. https://doi.org/10.2337/dc20-S009. (PMID: 10.2337/dc20-S009)
      McCreight LJ, Bailey CJ, Pearson ER (2016) Metformin and the gastrointestinal tract. Diabetologia 59(3):426–435. https://doi.org/10.1007/s00125-015-3844-9. (PMID: 10.1007/s00125-015-3844-9267807504742508)
      Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585. https://doi.org/10.1007/s00125-017-4342-z. (PMID: 10.1007/s00125-017-4342-z287760865552828)
      Galuska D, Nolte LA, Zierath JR, Wallberg-Henriksson H (1994) Effect of metformin on insulin-stimulated glucose transport in isolated skeletal muscle obtained from patients with NIDDM. Diabetologia 37(8):826–832. https://doi.org/10.1007/BF00404340. (PMID: 10.1007/BF004043407988785)
      Coyle C, Cafferty FH, Vale C, Langley RE (2016) Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol 27(12):2184–2195. https://doi.org/10.1093/annonc/mdw410.
      Graham GG, Punt J, Arora M et al (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50(2):81–98. https://doi.org/10.2165/11534750-000000000-00000. (PMID: 10.2165/11534750-000000000-0000021241070)
      Timmins P, Donahue S, Meeker J, Marathe P (2005) Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet 44(7):721–729. https://doi.org/10.2165/00003088-200544070-00004. (PMID: 10.2165/00003088-200544070-0000415966755)
      Dallmann R, Brown SA, Gachon F (2014) Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol 54(1):339–361. https://doi.org/10.1146/annurev-pharmtox-011613-135923.
      Roenneberg T, Kuehnle T, Juda M et al (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11(6):429–438. https://doi.org/10.1016/j.smrv.2007.07.005. (PMID: 10.1016/j.smrv.2007.07.00517936039)
      Sancar A, Van Gelder RN (2021) Clocks, cancer, and chronochemotherapy. Science 371(6524):eabb0738. https://doi.org/10.1126/science.abb0738. (PMID: 10.1126/science.abb073833384351)
      Buttgereit F, Smolen JS, Coogan AN, Cajochen C (2015) Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol 11(6):349–356. https://doi.org/10.1038/nrrheum.2015.31. (PMID: 10.1038/nrrheum.2015.3125800214)
      Wallace A, Chinn D, Rubin G (2003) Taking simvastatin in the morning compared with in the evening: randomised controlled trial. BMJ 327(7418):788. https://doi.org/10.1136/bmj.327.7418.788. (PMID: 10.1136/bmj.327.7418.78814525878214096)
      Zhou J, Wang J, Zhang X, Tang Q (2021) New insights into cancer chronotherapies. Front Pharmacol 12(December):741295. https://doi.org/10.3389/fphar.2021.741295. (PMID: 10.3389/fphar.2021.741295349662778710512)
      Hanke N, Türk D, Selzer D et al (2020) A comprehensive whole-body physiologically based pharmacokinetic drug–drug–gene interaction model of metformin and cimetidine in healthy adults and renally impaired individuals. Clin Pharmacokinet 59(11):1419–1431. https://doi.org/10.1007/s40262-020-00896-w. (PMID: 10.1007/s40262-020-00896-w324490777658088)
      Henriksson E, Huber A-L, Soto EK et al (2017) The liver circadian clock modulates biochemical and physiological responses to metformin. J Biol Rhythms 32(4):345–358. https://doi.org/10.1177/0748730417710348. (PMID: 10.1177/0748730417710348288166325657447)
      Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111(45):16219–16224. https://doi.org/10.1073/pnas.1408886111. (PMID: 10.1073/pnas.1408886111253493874234565)
      Oda M, Koyanagi S, Tsurudome Y, Kanemitsu T, Matsunaga N, Ohdo S (2014) Renal circadian clock regulates the dosing-time dependency of cisplatin-induced nephrotoxicity in mice. Mol Pharmacol 85(5):715–722. https://doi.org/10.1124/mol.113.089805. (PMID: 10.1124/mol.113.08980524567546)
      Wesson LG (1964) Electrolyte excretion in relation to diurnal cycles of renal function. Medicine (Baltimore) 43(5):547–592. https://doi.org/10.1097/00005792-196409000-00002. (PMID: 10.1097/00005792-196409000-0000214210938)
      van Acker BAC, Koomen GCM, Koopman MG, Krediet RT, Arisz L (1992) Discrepancy between circadian rhythms of inulin and creatinine clearance. J Lab Clin Med 120(3):400–410. (PMID: 1517687)
      Koopman MG, Koomen GCM, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci 77(1):105–111. https://doi.org/10.1042/cs0770105. (PMID: 10.1042/cs0770105)
      Merck (2022) Glucophage® 500 mg/- 850 mg/- 1000 mg Filmtabletten. Fachinformation. https://www.fachinfo.de/pdf/000959 . Accessed 30 May 2022.
      van Rongen A, Kervezee L, Brill M et al (2015) Population pharmacokinetic model characterizing 24-hour variation in the pharmacokinetics of oral and intravenous midazolam in healthy volunteers. CPT Pharmacometrics Syst Pharmacol 4(8):454–464. https://doi.org/10.1002/psp4.12007. (PMID: 10.1002/psp4.12007263801544562161)
      Peng HT, Bouak F, Vartanian O, Cheung B (2013) A physiologically based pharmacokinetics model for melatonin - effects of light and routes of administration. Int J Pharm 458(1):156–168. https://doi.org/10.1016/j.ijpharm.2013.09.033.
      Lott D, Lehr T, Dingemanse J, Krause A (2018) Modeling tolerance development for the effect on heart rate of the selective S1P 1 receptor modulator ponesimod. Clin Pharmacol Ther 103(6):1083–1092. https://doi.org/10.1002/cpt.877. (PMID: 10.1002/cpt.87728913826)
      Ansermet C, Centeno G, Nikolaeva S, Maillard MP, Pradervand S, Firsov D (2019) The intrinsic circadian clock in podocytes controls glomerular filtration rate. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-52682-9. (PMID: 10.1038/s41598-019-52682-9)
      Wuerzner G, Firsov D, Bonny O (2014) Circadian glomerular function: from physiology to molecular and therapeutical aspects. Nephrol Dial Transplant 29(8):1475–1480. https://doi.org/10.1093/ndt/gft525.
      Mure LS, Le HD, Benegiamo G et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359(6381):eaao0318. https://doi.org/10.1126/science.aao0318. (PMID: 10.1126/science.aao0318294390245924732)
      Sambol NC, Brookes LG, Chiang J et al (1996) Food intake and dosage level, but not tablet vs solution dosage form, affect the absorption of metformin HCl in man. Br J Clin Pharmacol 42(4):510–512. https://doi.org/10.1111/j.1365-2125.1996.tb00017.x. (PMID: 10.1111/j.1365-2125.1996.tb00017.x8904626)
      Desai D, Wong B, Huang Y et al (2014) Surfactant-mediated dissolution of metformin hydrochloride tablets: wetting effects versus ion pairs diffusivity. J Pharm Sci 103(3):920–926. https://doi.org/10.1002/jps.23852.
      Vidon N, Chaussade S, Noel M, Franchisseur C, Huchet B, Bernier JJ (1988) Metformin in the digestive tract. Diabetes Res Clin Pract 4(3):223–229. https://doi.org/10.1016/s0168-8227(88)80022-6. (PMID: 10.1016/s0168-8227(88)80022-63359923)
      Mohandas R, Douma LG, Scindia Y, Gumz ML (2022) Circadian rhythms and renal pathophysiology. J Clin Invest 132(3):e148277. https://doi.org/10.1172/JCI148277. (PMID: 10.1172/JCI148277351048008803319)
      Stage TB, Wellhagen G, Christensen MMH, Guiastrennec B, Brøsen K, Kjellsson MC (2019) Using a semi-mechanistic model to identify the main sources of variability of metformin pharmacokinetics. Basic Clin Pharmacol Toxicol 124(1):105–114. https://doi.org/10.1111/bcpt.13139. (PMID: 10.1111/bcpt.1313930267605)
      Duong JK, Kumar SS, Kirkpatrick CM et al (2013) Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. Clin Pharmacokinet 52(5):373–384. https://doi.org/10.1007/s40262-013-0046-9. (PMID: 10.1007/s40262-013-0046-923475568)
      Kervezee L, Kosmadopoulos A, Boivin DB (2020) Metabolic and cardiovascular consequences of shift work: the role of circadian disruption and sleep disturbances. Eur J Neurosci 51(1):396–412. https://doi.org/10.1111/ejn.14216.
      Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES (2015) Mismatch of sleep and work timing and risk of type 2 diabetes. Diabetes Care 38(9):1707–1713. https://doi.org/10.2337/dc15-0302. (PMID: 10.2337/dc15-0302261095024542269)
      Mason IC, Qian J, Adler GK, Scheer FAJL (2020) Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes. Diabetologia 63(3):462–472. https://doi.org/10.1007/s00125-019-05059-6. (PMID: 10.1007/s00125-019-05059-6319158917002226)
      Peng X, Fan R, Xie L et al (2022) A growing link between circadian rhythms, type 2 diabetes mellitus and alzheimer’s disease. Int J Mol Sci 23(1):504. https://doi.org/10.3390/ijms23010504. (PMID: 10.3390/ijms23010504350089338745289)
      Thomas AP, Hoang J, Vongbunyong K, Nguyen A, Rakshit K, Matveyenko AV (2016) Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology 157(12):4720–4731. https://doi.org/10.1210/en.2016-1309. (PMID: 10.1210/en.2016-1309276530345133345)
      Boehringer Ingelheim Pharma GmbH & Co. KG (2014) Bioavailability of BI 1356 BS and metformin after co-administration compared to the bioavailability of BI 1356 BS alone and metformin alone in healthy male volunteers. ClinicalTrials.gov Identifier: NCT02183506. National Library of Medicine, Bethesda MD; https://clinicaltrials.gov/ct2/show/NCT02183506 . Accessed 13 Sep 2022.
    • Grant Information:
      29468 United Kingdom CRUK_ Cancer Research UK
    • Contributed Indexing:
      Keywords: Chronopharmacology; Empirical modelling; Mechanistic modelling; Metformin; Pharmacokinetics; Renal excretion; Transporter
    • Accession Number:
      9100L32L2N (Metformin)
      0 (Organic Cation Transport Proteins)
      0 (Hypoglycemic Agents)
    • Publication Date:
      Date Created: 20230317 Date Completed: 20230508 Latest Revision: 20240313
    • Publication Date:
      20250114
    • Accession Number:
      PMC10163090
    • Accession Number:
      10.1007/s00125-023-05898-4
    • Accession Number:
      36930251