Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 7502533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0770 (Electronic) Linking ISSN: 03401200 NLM ISO Abbreviation: Biol Cybern Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Deep neural networks have surpassed human performance in key visual challenges such as object recognition, but require a large amount of energy, computation, and memory. In contrast, spiking neural networks (SNNs) have the potential to improve both the efficiency and biological plausibility of object recognition systems. Here we present a SNN model that uses spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli using multi-scale parallel processing. Mimicking neuronal response properties in early visual cortex, images were preprocessed with three different spatial frequency (SF) channels, before they were fed to a layer of spiking neurons whose synaptic weights were updated using spike-timing-dependent-plasticity. We investigate how the quality of the represented objects changes under different SF bands and WTA-I schemes. We demonstrate that a network of 200 spiking neurons tuned to three SFs can efficiently represent objects with as little as 15 spikes per neuron. Studying how core object recognition may be implemented using biologically plausible learning rules in SNNs may not only further our understanding of the brain, but also lead to novel and efficient artificial vision systems.
      (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Ales JM, Appelbaum LG, Cottereau BR et al (2013) The time course of shape discrimination in the human brain. Neuroimage 67:77–88. (PMID: 2311681410.1016/j.neuroimage.2012.10.044)
      Beyeler M, Dutt ND, Krichmar JL (2013) Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Netw 48:109–24. (PMID: 2399451010.1016/j.neunet.2013.07.012)
      Beyeler M, Dutt N, Krichmar JL (2016) 3D visual response properties of MSTd emerge from an efficient, sparse population code. J Neurosci 36(32):8399–8415. (PMID: 27511012660186010.1523/JNEUROSCI.0396-16.2016)
      Beyeler M, Rounds E, Carlson K et al (2019) Neural correlates of sparse coding and dimensionality reduction. PLoS Comput Biol 15(6):e1006908. (PMID: 31246948659703610.1371/journal.pcbi.1006908)
      Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10,464-10,472.
      Bing Z, Baumann I, Jiang Z et al (2019) Supervised learning in snn via reward-modulated spike-timing-dependent plasticity for a target reaching vehicle. Front Neurorobot 13:18. (PMID: 31130854650961610.3389/fnbot.2019.00018)
      Brzosko Z, Mierau SB, Paulsen O (2019) Neuromodulation of spike-timing-dependent plasticity: past, present, and future. Neuron 103(4):563–581. (PMID: 3143745310.1016/j.neuron.2019.05.041)
      Campbell, Fergus W. The transmission of spatial information through the visual system. From Theoretical Physics to Biology. Karger Publishers, 1973. 374–384.
      Caporale N, Dan Y et al (2008) Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci 31(1):25–46. (PMID: 1827528310.1146/annurev.neuro.31.060407.125639)
      Chang L, Tsao DY (2017) The code for facial identity in the primate brain. Cell 169(6):1013–1028. (PMID: 28575666808838910.1016/j.cell.2017.05.011)
      Chauhan T, Masquelier T, Montlibert A et al (2018) Emergence of binocular disparity selectivity through Hebbian learning. J Neurosci 38(44):9563–9578.
      Chauhan T, Masquelier T, Cottereau BR (2021) Sub-optimality of the early visual system explained through biologically plausible plasticity. Front Neurosci 15:727448. (PMID: 34602970848026510.3389/fnins.2021.727448)
      Cichy RM, Pantazis D, Oliva A (2016) Similarity-based fusion of meg and fmri reveals spatio-temporal dynamics in human cortex during visual object recognition. Cereb Cortex 26(8):3563–3579. (PMID: 27235099496102210.1093/cercor/bhw135)
      De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22(5):545–559. (PMID: 711295410.1016/0042-6989(82)90113-4)
      De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22(5):545–559. (PMID: 711295410.1016/0042-6989(82)90113-4)
      Delorme A, Thorpe SJ (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14(6–7):795–803. (PMID: 1166577110.1016/S0893-6080(01)00049-1)
      Derrington A, Lennie P (1982) The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J Physiol 333(1):343–366. (PMID: 7182469119725210.1113/jphysiol.1982.sp014457)
      Derrington A, Lennie P, Wright M (1979) The mechanism of peripherally evoked responses in retinal ganglion cells. J Physiol 289(1):299–310. (PMID: 458660128137110.1113/jphysiol.1979.sp012738)
      DiCarlo J, Zoccolan D, Rust N (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434. (PMID: 22325196330644410.1016/j.neuron.2012.01.010)
      Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci. https://doi.org/10.3389/fncom.2015.00099. (PMID: 10.3389/fncom.2015.00099269416374522567)
      Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552. (PMID: 16783910139596010.1113/jphysiol.1966.sp008107)
      Falez P, Tirilly P, Bilasco IM, et al (2019) Multi-layered spiking neural network with target timestamp threshold adaptation and stdp. In: 2019 international joint conference on neural networks (IJCNN). IEEE, pp 1–8.
      Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571. (PMID: 22920249343119310.1016/j.neuron.2012.08.001)
      Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. Josa A 4(12):2379–2394. (PMID: 10.1364/JOSAA.4.002379)
      Fu Q, Dong H (2021) An ensemble unsupervised spiking neural network for objective recognition. Neurocomputing 419:47–58. (PMID: 10.1016/j.neucom.2020.07.109)
      Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, Cambridge. (PMID: 10.1017/CBO9780511815706)
      Ginsburg AP (1986) Spatial filtering and visual form perception. Handbook of Perception and Human Performance, Vol 2 Cognitive Processes and Performance.
      Goel A, Tung C, Lu YH, et al (2020) A survey of methods for low-power deep learning and computer vision. In: 2020 IEEE 6th world forum on internet of things (WF-IoT). IEEE, pp 1–6.
      Gütig R, Aharonov R, Rotter S et al (2003) Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J Neurosci 23(9):3697–3714. https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003. (PMID: 10.1523/JNEUROSCI.23-09-03697.2003127363416742165)
      Gütig R, Aharonov R, Rotter S et al (2003) Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J Neurosci 23(9):3697–3714. (PMID: 12736341674216510.1523/JNEUROSCI.23-09-03697.2003)
      Hao Y, Huang X, Dong M et al (2020) A biologically plausible supervised learning method for spiking neural networks using the symmetric stdp rule. Neural Netw 121:387–395. (PMID: 3159384310.1016/j.neunet.2019.09.007)
      He K, Zhang X, Ren S, et al (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034.
      Henriksson L, Nurminen L, Hyvärinen A et al (2008) Spatial frequency tuning in human retinotopic visual areas. J Vis 8(10):5–5. (PMID: 10.1167/8.10.5)
      Hughes HC, Nozawa G, Kitterle F (1996) Global precedence, spatial frequency channels, and the statistics of natural images. J Cognit Neurosci 8(3):197–230. (PMID: 10.1162/jocn.1996.8.3.197)
      Jiang P, Ergu D, Liu F et al (2022) A review of yolo algorithm developments. Procedia Comput Sci 199:1066–1073. (PMID: 10.1016/j.procs.2022.01.135)
      Kauffmann L, Ramanoël S, Peyrin C (2014) The neural bases of spatial frequency processing during scene perception. Front Integr Neurosci 8:37. (PMID: 24847226401985110.3389/fnint.2014.00037)
      Kheradpisheh SR, Ganjtabesh M, Thorpe SJ et al (2018) Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw 99:56–67. (PMID: 2932895810.1016/j.neunet.2017.12.005)
      Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech. Rep. 0, University of Toronto, Toronto, Ontario.
      LeCun Y (1998) The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.
      Liu D, Yue S (2016) Visual pattern recognition using unsupervised spike timing dependent plasticity learning. In: 2016 international joint conference on neural networks (IJCNN). IEEE, pp 285–292.
      Liu Q, Pan G, Ruan H et al (2020) Unsupervised aer object recognition based on multiscale spatio-temporal features and spiking neurons. IEEE Trans Neural Netw Learn Syst 31(12):5300–5311. (PMID: 3205458710.1109/TNNLS.2020.2966058)
      Maass W (2000) On the computational power of winner-take-all. Neural Comput 12(11):2519–2535. (PMID: 1111012510.1162/089976600300014827)
      Majaj NJ, Hong H, Solomon EA et al (2015) Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict human core object recognition performance. J Neurosci 35(39):13,402-13,418. (PMID: 10.1523/JNEUROSCI.5181-14.2015)
      Masquelier T, Thorpe S (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2):e31. (PMID: 17305422179782210.1371/journal.pcbi.0030031)
      Mozafari M, Ganjtabesh M, Nowzari-Dalini A et al (2019) Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks. Pattern Recognit 94:87–95. (PMID: 10.1016/j.patcog.2019.05.015)
      Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10(5):360–372.
      Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis Res 37(23):3311–3325. https://doi.org/10.1016/S0042-6989(97)00169-7. (PMID: 10.1016/S0042-6989(97)00169-79425546)
      Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE workshop on applications of computer vision. IEEE, pp 138–142.
      Sanchez-Garcia M, Chauhan T, Cottereau BR, et al (2022) Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition. arXiv:2212.00081.
      Shapley R, Lennie P et al (1985) Spatial frequency analysis in the visual system. Annu Rev Neurosci 8(1):547–581. (PMID: 392094610.1146/annurev.ne.08.030185.002555)
      Solomon SG, White AJ, Martin PR (2002) Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. J Neurosci 22(1):338–349. (PMID: 11756517675760410.1523/JNEUROSCI.22-01-00338.2002)
      Stivaktakis R, Tsagkatakis G, Tsakalides P (2019) Deep learning for multilabel land cover scene categorization using data augmentation. IEEE Geosci Remote Sens Lett 16(7):1031–1035. (PMID: 10.1109/LGRS.2019.2893306)
      Stuijt J, Sifalakis M, Yousefzadeh A et al (2021) [Formula: see text]brain: an event-driven and fully synthesizable architecture for spiking neural networks. Front Neurosci 15:538. (PMID: 10.3389/fnins.2021.664208)
      Sun Y, Liang D, Wang X, et al (2015) Deepid3: face recognition with very deep neural networks. arXiv:1502.00873.
      Tolhurst DJ, Tadmor Y, Chao T (1992) Amplitude spectra of natural images. Ophthalmic Physiol Opt 12(2):229–232. (PMID: 140817910.1111/j.1475-1313.1992.tb00296.x)
      Vigneron A, Martinet J (2020) A critical survey of stdp in spiking neural networks for pattern recognition. In: 2020 international joint conference on neural networks (IJCNN). IEEE, pp 1–9.
      Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276. (PMID: 1067883510.1126/science.287.5456.1273)
      Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747.
      Yu Q, Tang H, Tan KC et al (2013) Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans Neural Netw Learn Syst 24(10):1539–1552. (PMID: 2480859210.1109/TNNLS.2013.2245677)
      Zhou Q, Li X (2022) A bio-inspired hierarchical spiking neural network with reward-modulated stdp learning rule for aer object recognition. IEEE Sens J 22(16):16,323-16,338. (PMID: 10.1109/JSEN.2022.3189679)
    • Contributed Indexing:
      Keywords: Multi-scale processing; Spike-latency code; Spike-timing-dependent-plasticity; Spiking neural networks; Winner-take-all inhibition
    • Publication Date:
      Date Created: 20230402 Date Completed: 20230508 Latest Revision: 20230509
    • Publication Date:
      20250114
    • Accession Number:
      10.1007/s00422-023-00956-x
    • Accession Number:
      37004546