Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pseudomonas protegens Affects Mosquito Survival and Development.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, Springer International.
    • Subject Terms:
    • Abstract:
      This study investigated the pathogenic potential of Pseudomonas protegens on mosquito larvae of the two species Culex pipiens and Aedes albopictus, representing major threats for disease transmission in the Mediterranean area and worldwide. The bacterium achieved to kill over 90% of the mosquito larvae within 72 h after exposition to a bacterial concentration of 100 million CFU/ml. These lethal effects were concentration dependent and a significantly higher susceptibility was associated with younger larvae of both mosquito species. Significant slowdown of immature (larval and pupal) development and decrease in adult emergence rate after treatment with sub-lethal doses of the bacterium were also detected. This study reports for the first time the insecticidal activity of a root-associated biocontrol bacterium against aquatic mosquito larvae.
      (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Ruiu L (2020) Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy 10:861. https://doi.org/10.3390/agronomy10060861. (PMID: 10.3390/agronomy10060861)
      Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. https://doi.org/10.1038/nrmicro1129. (PMID: 10.1038/nrmicro112915759041)
      Philmus B, Shaffer BT, Kidarsa TA, Yan Q, Raaijmakers JM, Begley TP, Loper JE (2015) Investigations into the Biosynthesis, Regulation, and Self-Resistance of Toxoflavin in Pseudomonas protegens Pf-5. ChemBioChem 16:1782–1790. https://doi.org/10.1002/cbic.201500247. (PMID: 10.1002/cbic.20150024726077901)
      Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G et al (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188. https://doi.org/10.1016/j.syapm.2010.10.005. (PMID: 10.1016/j.syapm.2010.10.00521392918)
      Flury P, Aellen N, Ruffner B, Péchy-Tarr M, Fataar S, Metla Z, Dominguez-Ferreras A, Bloemberg G, Frey J, Goesmann A et al (2016) Insect pathogenicity in plant-beneficial pseudomonads: Phylogenetic distribution and comparative genomics. ISME J 10:2527–2542. https://doi.org/10.1038/ismej.2016.5. (PMID: 10.1038/ismej.2016.5268944485030700)
      Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M (2020) Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. ISME J 14:2766–2782. https://doi.org/10.1038/s41396-020-0729-9. (PMID: 10.1038/s41396-020-0729-9328794617784888)
      Ruiu L, Marche MG, Mura ME, Tarasco E (2022) Involvement of a novel Pseudomonas protegens strain associated with entomopathogenic nematode infective juveniles in insect pathogenesis. Pest Manag Sci 78:5437–5443. https://doi.org/10.1002/ps.7166. (PMID: 10.1002/ps.7166360578609826039)
      Ruiu L, Mura ME (2021) Oral toxicity of Pseudomonas protegens against muscoid flies. Toxins 13:772. https://doi.org/10.3390/toxins13110772. (PMID: 10.3390/toxins13110772348225568621253)
      Flury P, Vesga P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG et al (2019) Persistence of root-colonizing Pseudomonas protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME J 13:860–872. https://doi.org/10.1038/s41396-018-0317-4. (PMID: 10.1038/s41396-018-0317-430504899)
      Thomas WE, Ellar DJ (1983) Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. FEBS Lett 154:362–368. https://doi.org/10.1016/0014-5793(83)80183-5. (PMID: 10.1016/0014-5793(83)80183-56832375)
      Darboux I, Nielsen-LeRoux C, Charles JF, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990. https://doi.org/10.1016/S0965-1748(01)00046-7. (PMID: 10.1016/S0965-1748(01)00046-711483434)
      Paul A, Harrington LC, Zhang L, Scott JG (2005) Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc 21:305–309. https://doi.org/10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2. (PMID: 10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;216252522)
      Su T, Thieme J, Ocegueda C, Ball M, Cheng ML (2018) Resistance to Lysinibacillus sphaericus and other commonly used pesticides in Culex pipiens (Diptera: Culicidae) from Chico. California J Med Entomol 55:423–428. https://doi.org/10.1093/jme/tjx235. (PMID: 10.1093/jme/tjx23529272497)
      Myasnik M, Manasherob R, Ben-Dov E, Zaritsky A, Margalith Y, Barak Z (2001) Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr Microbiol 43:140–143. https://doi.org/10.1007/s002840010276. (PMID: 10.1007/s00284001027611391479)
      Ruiu L, Virdis B, Mura ME, Floris I, Satta A, Tarasco E (2017) Oral insecticidal activity of new bacterial isolates against insects in two orders. Biocontrol Sci Technol 2:886–902. https://doi.org/10.1080/09583157.2017.1355964. (PMID: 10.1080/09583157.2017.1355964)
      Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent Pseudomonads involved in suppression. Phytopathology 76:181–185. https://doi.org/10.1094/Phyto-76-181. (PMID: 10.1094/Phyto-76-181)
      Ledda S, Foxi C, Puggioni G, Bechere R, Rocchigiani AM, Scivoli R et al (2023) Experimental infection of Aedes (Stegomyia) albopictus and Culex pipiens mosquitoes with Bluetongue virus. Med Vet Entomol 37:105–110. https://doi.org/10.1111/mve.12613. (PMID: 10.1111/mve.1261336193883)
      Bedini S, Muniz ER, Tani C, Conti B, Ruiu L (2020) Insecticidal potential of Brevibacillus laterosporus against dipteran pest species in a wide ecological range. J Invertebr Pathol 177:107493. https://doi.org/10.1016/j.jip.2020.107493. (PMID: 10.1016/j.jip.2020.10749333132202)
      R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
      Keel C (2016) A look into the toolbox of multi-talents: insect pathogenicity determinants of plant-beneficial pseudomonads. Environ Microbiol 18:3207–3209. https://doi.org/10.1111/1462-2920.13462. (PMID: 10.1111/1462-2920.1346227450048)
      Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 4:287. https://doi.org/10.3389/fpls.2013.00287. (PMID: 10.3389/fpls.2013.00287239141973728486)
      Ruffner B, Péchy-Tarr M, Höfte M, Bloemberg G, Grunder J, Keel C, Maurhofer M (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16:1–14. https://doi.org/10.1186/s12864-015-1763-2. (PMID: 10.1186/s12864-015-1763-2)
      Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Tanada Y, Kaya HK (eds) Insect pathology. Academic press Inc., San Diego, pp 265–349. (PMID: 10.1016/B978-0-12-384984-7.00008-7)
      Job V, Gomez-Valero L, Renier A, Rusniok C, Bouillot S, Chenal-Francisque V, Gueguen E, Adrait A, Robert-Genthon M, Jeannot K, Panchev P, Elsen S, Fauvarque M-O, Couté Y, Buchrieser C, Attrée I (2022) Genomic erosion and horizontal gene transfer shape functional differences of the ExlA toxin in Pseudomonas spp. Iscience 25:104596. https://doi.org/10.1016/j.isci.2022.104596. (PMID: 10.1016/j.isci.2022.104596357898429250014)
      Bedini S, Conti B, Hamze R, Muniz ER, Fernandes ÉK, Ruiu L (2021) Lethal and sub-lethal activity of Brevibacillus laterosporus on the mosquito Aedes albopictus and side effects on non-target water-dwelling invertebrates. J Invertebr Pathol 184:107645. https://doi.org/10.1016/j.jip.2021.107645. (PMID: 10.1016/j.jip.2021.10764534245776)
      Hamze R, Nuvoli MT, Pirino C, Ruiu L (2022) Compatibility of the bacterial entomopathogen Pseudomonas protegens with the natural predator Chrysoperla carnea (Neuroptera: Chrysopidae). J Invertebr Pathol 194:107828. https://doi.org/10.1016/j.jip.2022.107828. (PMID: 10.1016/j.jip.2022.10782836087780)
      Preethi SV, Pandian RS (2009) Evaluation of the larvicidal and pupicidal activities of the exotoxin of Pseudomonas fluorescens Migula against Aedes aegypti (L.) and Culex quinquefasciatus Say. Curr Biot 3:416–438.
      Roy M, Chatterjee SN, Roy P, Dangar TK (2010) Significance of the midgut bacterium Pseudomonas fluorescens on Culex vishnui (Diptera: Culicidae) larval development. Int J Trop Insect Sci 30:182–185. https://doi.org/10.1017/S1742758410000366. (PMID: 10.1017/S1742758410000366)
      Wang YT, Shen RX, Xing D, Zhao CP, Gao HT, Wu JH et al (2021) Metagenome sequencing reveals the midgut microbiota makeup of Culex pipiens quinquefasciatus and its possible relationship with insecticide resistance. Front Microbiol 12:625539. https://doi.org/10.3389/fmicb.2021.625539. (PMID: 10.3389/fmicb.2021.625539337170147948229)
      Agaras BC, Wall LG, Valverde C (2017) Pseudomonas communities in soil agroecosystems. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR Research, 1st edn. CAB International, Boston, pp 126–147. (PMID: 10.1079/9781786390325.0126)
    • Grant Information:
      Grant 2017 Fondazione di Sardegna; project "Insect Microbiome Resources" Fondazione di Sardegna; RAS AOO 12-01-00 Convention n. 21 Prot. n. 22656 of 10/10/2022 Department of Hygiene and Health and Social Welfare, Autonomous Region of Sardinia
    • Accession Number:
      0 (Biological Control Agents)
    • Subject Terms:
      Pseudomonas protegens
    • Publication Date:
      Date Created: 20230407 Date Completed: 20230416 Latest Revision: 20230416
    • Publication Date:
      20230416
    • Accession Number:
      10.1007/s00284-023-03291-3
    • Accession Number:
      37029244