Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Identification of Potential p38γ Inhibitors via In Silico Screening, In Vitro Bioassay and Molecular Dynamics Simulation Studies.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: MDPI Country of Publication: Switzerland NLM ID: 101092791 Publication Model: Electronic Cited Medium: Internet ISSN: 1422-0067 (Electronic) Linking ISSN: 14220067 NLM ISO Abbreviation: Int J Mol Sci Subsets: MEDLINE
- Publication Information:
Original Publication: Basel, Switzerland : MDPI, [2000-
- Subject Terms:
- Abstract:
Protein kinase p38γ is an attractive target against cancer because it plays a pivotal role in cancer cell proliferation by phosphorylating the retinoblastoma tumour suppressor protein. Therefore, inhibition of p38γ with active small molecules represents an attractive alternative for developing anti-cancer drugs. In this work, we present a rigorous and systematic virtual screening framework to identify potential p38γ inhibitors against cancer. We combined the use of machine learning-based quantitative structure activity relationship modelling with conventional computer-aided drug discovery techniques, namely molecular docking and ligand-based methods, to identify potential p38γ inhibitors. The hit compounds were filtered using negative design techniques and then assessed for their binding stability with p38γ through molecular dynamics simulations. To this end, we identified a promising compound that inhibits p38γ activity at nanomolar concentrations and hepatocellular carcinoma cell growth in vitro in the low micromolar range. This hit compound could serve as a potential scaffold for further development of a potent p38γ inhibitor against cancer.
- References:
Int J Biol Sci. 2021 Sep 23;17(14):4036-4046. (PMID: 34671218)
Chem Biol Drug Des. 2019 May;93(5):685-699. (PMID: 30688405)
Mol Pharmacol. 2011 Oct;80(4):657-64. (PMID: 21778304)
Molecules. 2020 Oct 15;25(20):. (PMID: 33076254)
J Chem Inf Model. 2012 Jan 23;52(1):225-32. (PMID: 22148635)
Aging (Albany NY). 2020 Sep 24;12(18):18384-18395. (PMID: 32970611)
BMC Bioinformatics. 2019 Feb 4;19(Suppl 13):426. (PMID: 30717654)
Angew Chem Int Ed Engl. 2017 May 2;56(19):5363-5367. (PMID: 28397331)
J Biol Chem. 2014 Aug 22;289(34):23546-56. (PMID: 25006254)
Sci Rep. 2016 Jun 29;6:28655. (PMID: 27353957)
J Comput Aided Mol Des. 2015 Aug;29(8):707-12. (PMID: 25947277)
J Invest Dermatol. 2018 Nov;138(11):2377-2387. (PMID: 29758280)
Trends Pharmacol Sci. 2019 Aug;40(8):592-604. (PMID: 31320117)
Expert Opin Drug Discov. 2016;11(2):137-48. (PMID: 26558489)
Nat Biotechnol. 2011 Apr;29(4):301. (PMID: 21478838)
J Comput Chem. 2005 Dec;26(16):1668-88. (PMID: 16200636)
PLoS One. 2012;7(7):e39713. (PMID: 22768308)
J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58. (PMID: 14632445)
Stem Cells. 2015 Sep;33(9):2738-47. (PMID: 26077647)
BMC Mol Cell Biol. 2020 Jul 8;21(1):52. (PMID: 32640984)
Expert Rev Anticancer Ther. 2018 Dec;18(12):1249-1270. (PMID: 30259761)
Front Pharmacol. 2018 Oct 10;9:1136. (PMID: 30364128)
Nat Rev Drug Discov. 2019 Jun;18(6):463-477. (PMID: 30976107)
J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
Br J Pharmacol. 2015 Jun;172(11):2675-700. (PMID: 25630872)
J Chem Inf Model. 2012 Aug 27;52(8):2044-58. (PMID: 22721530)
Oncotarget. 2016 Jan 19;7(3):3489-505. (PMID: 26655092)
Neoplasia. 2011 May;13(5):472-82. (PMID: 21532888)
IEEE Trans Neural Netw. 1999;10(5):1239-43. (PMID: 18252625)
Pharmacol Res. 2021 Mar;165:105463. (PMID: 33513356)
J Comput Chem. 2009 Dec;30(16):2785-91. (PMID: 19399780)
Cell Signal. 2020 Jan;65:109432. (PMID: 31693876)
J Chem Inf Model. 2016 Jun 27;56(6):1127-31. (PMID: 27218604)
Biochem Biophys Res Commun. 2019 Sep 10;517(1):172-179. (PMID: 31349971)
CA Cancer J Clin. 2021 May;71(3):209-249. (PMID: 33538338)
Expert Opin Drug Discov. 2014 Jan;9(1):93-104. (PMID: 24304044)
J Cheminform. 2013 May 30;5(1):27. (PMID: 23721648)
J Chem Inf Model. 2013 Aug 26;53(8):1893-904. (PMID: 23379370)
Mol Inform. 2014 Apr;33(4):311-4. (PMID: 27485777)
Mol Cancer. 2018 Feb 19;17(1):48. (PMID: 29455673)
J Clin Med. 2019 Jan 04;8(1):. (PMID: 30621175)
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W623-33. (PMID: 19498078)
Cell Death Dis. 2022 Mar 4;13(3):210. (PMID: 35246508)
Mol Inform. 2010 Jul 12;29(6-7):476-88. (PMID: 27463326)
Pharmacol Res. 2012 Aug;66(2):105-43. (PMID: 22569528)
Biomed Res Int. 2014;2014:761849. (PMID: 25045698)
Methods Mol Biol. 2013;930:499-526. (PMID: 23086855)
IEEE Trans Neural Netw. 1991;2(1):47-55. (PMID: 18276350)
Structure. 1999 Sep 15;7(9):1057-65. (PMID: 10508788)
J Biol Chem. 2017 Sep 8;292(36):15070-15079. (PMID: 28739874)
Bioinformatics. 2008 Nov 1;24(21):2518-25. (PMID: 18784118)
J Cheminform. 2011 Oct 07;3:33. (PMID: 21982300)
Oncogene. 2016 Feb 25;35(8):1039-48. (PMID: 25961922)
J Chem Inf Model. 2015 Feb 23;55(2):460-73. (PMID: 25558886)
J Cheminform. 2017 Jun 6;9(1):33. (PMID: 29086040)
J Chem Inf Model. 2011 Jan 24;51(1):69-82. (PMID: 21117705)
Expert Opin Drug Discov. 2015 Dec;10(12):1283-300. (PMID: 26358617)
Nature. 2019 Apr;568(7753):557-560. (PMID: 30971822)
Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9970-9975. (PMID: 29873877)
J Comput Chem. 2011 May;32(7):1466-74. (PMID: 21425294)
J Mol Graph Model. 2002 Jan;20(4):269-76. (PMID: 11858635)
J Chem Theory Comput. 2015 Nov 10;11(11):5525-42. (PMID: 26574340)
- Contributed Indexing:
Keywords: QSAR modelling; binding interaction; molecular dynamic simulations; p38γ; virtual screening
- Accession Number:
0 (Antineoplastic Agents)
0 (Ligands)
EC 2.7.1.- (Mitogen-Activated Protein Kinase 12)
- Publication Date:
Date Created: 20230428 Date Completed: 20230502 Latest Revision: 20230502
- Publication Date:
20250114
- Accession Number:
PMC10139033
- Accession Number:
10.3390/ijms24087360
- Accession Number:
37108523
No Comments.