Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 100912837 Publication Model: Print Cited Medium: Internet ISSN: 1477-4054 (Electronic) Linking ISSN: 14675463 NLM ISO Abbreviation: Brief Bioinform Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Oxford University Press
      Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000-
    • Subject Terms:
    • Abstract:
      The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.
      (© The Author(s) 2023. Published by Oxford University Press.)
    • References:
      Philos Trans R Soc Lond B Biol Sci. 2018 Nov 5;373(1762):. (PMID: 30397097)
      Science. 2021 Aug 27;373(6558):1047-1051. (PMID: 34446608)
      IEEE Trans Nanobioscience. 2016 Oct;15(7):674-682. (PMID: 27552763)
      Cell Rep. 2014 Jul 10;8(1):284-96. (PMID: 24981863)
      Cell. 2012 Jun 22;149(7):1635-46. (PMID: 22608085)
      Nat Biotechnol. 2021 Oct;39(10):1278-1291. (PMID: 33986546)
      Nat Methods. 2015 Aug;12(8):767-72. (PMID: 26121403)
      Nucleic Acids Res. 2012 Jun;40(11):5023-33. (PMID: 22344696)
      Methods. 2022 Jul;203:478-487. (PMID: 35182749)
      Anal Biochem. 2016 Mar 15;497:60-7. (PMID: 26748145)
      Nat Methods. 2018 Mar;15(3):201-206. (PMID: 29334379)
      Cell. 2014 Sep 25;159(1):148-162. (PMID: 25219674)
      Mol Ther Nucleic Acids. 2019 Dec 6;18:269-274. (PMID: 31581051)
      Nat Struct Mol Biol. 2019 May;26(5):380-388. (PMID: 31061524)
      RNA. 2019 Feb;25(2):205-218. (PMID: 30425123)
      Nucleic Acids Res. 2021 Sep 20;49(16):e92. (PMID: 34157120)
      NAR Genom Bioinform. 2020 Feb 07;2(1):lqaa007. (PMID: 33575554)
      J Exp Bot. 2019 Oct 15;70(19):5089-5600. (PMID: 31173101)
      Cell. 2019 Jul 25;178(3):731-747.e16. (PMID: 31257032)
      Nat Biotechnol. 2023 Jan 2;:. (PMID: 36593412)
      Nat Commun. 2022 May 17;13(1):2720. (PMID: 35581216)
      Brief Bioinform. 2020 Sep 25;21(5):1676-1696. (PMID: 31714956)
      Sci Rep. 2017 Apr 25;7:46757. (PMID: 28440291)
      Anal Biochem. 2016 Sep 1;508:104-13. (PMID: 27293216)
      Sci Rep. 2015 Sep 07;5:13859. (PMID: 26343792)
      Anal Biochem. 2016 Oct 1;510:72-75. (PMID: 27338301)
      Curr Protoc Mol Biol. 2015 Oct 01;112:4.25.1-4.25.24. (PMID: 26423590)
      Nat Rev Genet. 2022 Mar;23(3):169-181. (PMID: 34837041)
      Cell Res. 2018 Jun;28(6):616-624. (PMID: 29789545)
      Signal Transduct Target Ther. 2021 Feb 21;6(1):74. (PMID: 33611339)
      J Biomol Struct Dyn. 2017 Feb;35(3):683-687. (PMID: 26912125)
      Nat Commun. 2021 Jun 29;12(1):4011. (PMID: 34188054)
      BMC Genomics. 2018 Aug 1;19(1):574. (PMID: 30068294)
      Open Biol. 2017 May;7(5):. (PMID: 28566301)
      Genome Biol. 2022 Jan 17;23(1):25. (PMID: 35039061)
      Anal Biochem. 2018 Nov 15;561-562:59-65. (PMID: 30201554)
      Nat Methods. 2022 Jul;19(7):833-844. (PMID: 35697834)
      Nat Rev Genet. 2014 May;15(5):293-306. (PMID: 24662220)
      Trends Biotechnol. 2021 Jan;39(1):72-89. (PMID: 32620324)
      Nat Commun. 2020 Nov 26;11(1):6016. (PMID: 33243990)
      Nat Commun. 2021 Dec 10;12(1):7198. (PMID: 34893601)
      Nat Protoc. 2015 May;10(5):715-32. (PMID: 25855956)
      BMC Bioinformatics. 2018 Dec 31;19(Suppl 19):524. (PMID: 30598068)
      Nat Biotechnol. 2021 Nov;39(11):1394-1402. (PMID: 34282325)
      Genome Biol. 2022 May 16;23(1):115. (PMID: 35578346)
      Mol Cell. 2023 Jan 19;83(2):237-251.e7. (PMID: 36599352)
      J Biol Chem. 1957 Aug;227(2):907-15. (PMID: 13463012)
      Plant Mol Biol. 2018 Feb;96(3):327-337. (PMID: 29340952)
      Nucleic Acids Res. 2016 Jun 2;44(10):e91. (PMID: 26896799)
      Anal Biochem. 2014 Jul 1;456:53-60. (PMID: 24732113)
      Genome Biol. 2021 Jan 7;22(1):22. (PMID: 33413586)
      Comput Struct Biotechnol J. 2021 Sep 29;19:5510-5524. (PMID: 34712397)
      PLoS One. 2016 Oct 10;11(10):e0162707. (PMID: 27723837)
      Chembiochem. 2015 Mar 23;16(5):752-5. (PMID: 25676849)
      RNA. 2020 Jan;26(1):19-28. (PMID: 31624092)
      Mol Genet Genomics. 2016 Dec;291(6):2225-2229. (PMID: 27590733)
      Nat Rev Genet. 2021 Feb;22(2):119-131. (PMID: 33188361)
      PLoS Comput Biol. 2019 Jan 2;15(1):e1006663. (PMID: 30601803)
      Science. 2018 Sep 28;361(6409):1346-1349. (PMID: 30262497)
      Front Genet. 2018 Oct 25;9:495. (PMID: 30410501)
      Nature. 2012 Apr 29;485(7397):201-6. (PMID: 22575960)
      Bioinformatics. 2020 Jul 1;36(Suppl_1):i276-i284. (PMID: 32657407)
      Nucleic Acids Res. 2021 Jan 25;49(2):e7. (PMID: 32710622)
      Sci Rep. 2017 Jan 12;7:40242. (PMID: 28079126)
      RNA Biol. 2021 Oct 15;18(sup1):31-40. (PMID: 34559589)
      Nat Biotechnol. 2023 Mar;41(3):355-366. (PMID: 36302990)
      Nat Commun. 2019 Sep 9;10(1):4079. (PMID: 31501426)
      Trends Genet. 2022 Mar;38(3):246-257. (PMID: 34711425)
      Mol Biosyst. 2016 Oct 18;12(11):3333-3337. (PMID: 27550167)
      Anal Biochem. 2015 Dec 1;490:26-33. (PMID: 26314792)
      Mol Ther Nucleic Acids. 2018 Sep 7;12:635-644. (PMID: 30081234)
      Nat Methods. 2022 Dec;19(12):1590-1598. (PMID: 36357692)
      Comput Struct Biotechnol J. 2020 Jun 13;18:1587-1604. (PMID: 32670500)
      Nucleic Acids Res. 2019 Apr 23;47(7):e41. (PMID: 30993345)
      Methods. 2022 Jul;203:399-421. (PMID: 35248693)
      Int J Biol Sci. 2018 Sep 7;14(12):1669-1677. (PMID: 30416381)
      Cell. 2018 Dec 13;175(7):1872-1886.e24. (PMID: 30449621)
      Cell. 2021 Jun 10;184(12):3125-3142.e25. (PMID: 33930289)
      Nat Commun. 2019 Jul 31;10(1):3359. (PMID: 31366910)
      BMC Biol. 2020 Apr 15;18(1):40. (PMID: 32293435)
    • Contributed Indexing:
      Keywords: RNA modifications; deep learning; direct RNA sequencing; epitranscriptomics; machine learning; miCLIP
    • Accession Number:
      0 (RNA, Messenger)
      63231-63-0 (RNA)
    • Publication Date:
      Date Created: 20230504 Date Completed: 20230522 Latest Revision: 20230523
    • Publication Date:
      20231215
    • Accession Number:
      PMC10199766
    • Accession Number:
      10.1093/bib/bbad163
    • Accession Number:
      37139545