Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Systematics and phylogeography of bats of the genus Rhynchonycteris (Chiroptera: Emballonuridae): Integrating molecular phylogenetics, ecological niche modeling and morphometric data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Rhynchonycteris is a monotypic genus of Embalonurid bats, whose geographic distribution extends from southern Mexico to tropical regions of the South American continent, including Trinidad and Tobago. Although species that have a wide geographic distribution are frequently revealed to be polytypic, to date, no study has evaluated the taxonomic status of populations of Rhynchonycteris naso. Thus, the aim of this study is to address the patterns of phylogeographic structure and taxonomic subdivision of R. naso using molecular phylogenetics, morphometric data and ecological niche modeling. Phylogenetic results recovered using the genes COI, Cytb, Chd1, Dby, and Usp9x, supported the monophyly of the genus Rhynchonycteris, in addition, a deep phylogeographic structure was revealed by the mitochondrial gene COI for the populations of Belize and Panama in comparison to those of South America. The PCA, and the linear morphometry indicated an apparent differentiation between the cis-Andean and trans-Andean populations. Furthermore, according to the skull morphology, at least two morphotypes were identified. Ecological niche modeling projections in the present have shown that the Andean cordillera acts as a climatic barrier between these two populations, with the depression of Yaracuy (Northwest Venezuela) being the only putative climatically suitable path that could communicate these two populations. On the other hand, projections for the last glacial maximum showed a drastic decrease in climatically suitable areas for the species, suggesting that cycles of lower temperatures played an important role in the separation of these populations.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2023 Biganzoli-Rangel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
      Trends Ecol Evol. 2007 Mar;22(3):148-55. (PMID: 17129636)
      Mol Ecol. 2002 Dec;11(12):2571-81. (PMID: 12453240)
      PLoS Biol. 2018 Mar 14;16(3):e2005075. (PMID: 29538381)
      Syst Biol. 2012 May;61(3):539-42. (PMID: 22357727)
      Syst Biol. 2003 Oct;52(5):696-704. (PMID: 14530136)
      J Zool Syst Evol Res. 2019 Nov;57(4):1019-1038. (PMID: 31894177)
      Nat Methods. 2017 Jun;14(6):587-589. (PMID: 28481363)
      Nucleic Acids Res. 2004 Mar 19;32(5):1792-7. (PMID: 15034147)
      Mol Biol Evol. 2017 Dec 1;34(12):3299-3302. (PMID: 29029172)
      Science. 2005 Jan 28;307(5709):580-4. (PMID: 15681385)
      Mol Biol Evol. 1999 Jan;16(1):37-48. (PMID: 10331250)
      Sci Data. 2018 Nov 13;5:180254. (PMID: 30422125)
      PLoS One. 2019 Oct 10;14(10):e0213562. (PMID: 31600196)
      Zootaxa. 2017 Mar 13;4243(1):75-96. (PMID: 28610172)
      Nat Methods. 2012 Jul 30;9(8):772. (PMID: 22847109)
      Syst Biol. 2018 Sep 1;67(5):901-904. (PMID: 29718447)
      Ann N Y Acad Sci. 2011 Mar;1223:1-38. (PMID: 21449963)
      Mol Phylogenet Evol. 2016 Jan;94(Pt A):171-81. (PMID: 26343460)
      Geospat Health. 2014 Nov;9(1):221-9. (PMID: 25545939)
      Nature. 2013 Mar 21;495(7441):314. (PMID: 23518556)
      Mol Phylogenet Evol. 2012 Jul;64(1):156-65. (PMID: 22484358)
      Proc Biol Sci. 2001 Sep 7;268(1478):1825-32. (PMID: 11522202)
      BMC Evol Biol. 2013 Jan 29;13:26. (PMID: 23360354)
      PLoS One. 2010 Nov 30;5(11):e14156. (PMID: 21152400)
      PLoS One. 2011;6(7):e22648. (PMID: 21818359)
      Mol Ecol Resour. 2010 May;10(3):564-7. (PMID: 21565059)
      Mol Phylogenet Evol. 2016 Oct;103:184-198. (PMID: 27421565)
      PeerJ. 2019 Feb 06;7:e6281. (PMID: 30755826)
      Science. 2006 Mar 24;311(5768):1751-3. (PMID: 16556838)
      Mol Biol Evol. 2020 May 1;37(5):1530-1534. (PMID: 32011700)
      Nature. 1997 May 8;387(6629):138-9. (PMID: 9144281)
      Mol Biol Evol. 2018 Feb 1;35(2):518-522. (PMID: 29077904)
      PLoS One. 2017 Oct 11;12(10):e0186085. (PMID: 29020097)
    • Accession Number:
      0 (DNA, Mitochondrial)
    • Publication Date:
      Date Created: 20230504 Date Completed: 20230508 Latest Revision: 20230512
    • Publication Date:
      20240829
    • Accession Number:
      PMC10159116
    • Accession Number:
      10.1371/journal.pone.0285271
    • Accession Number:
      37141273