Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The role of lysosomal membrane proteins in autophagy and related diseases.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
    • Subject Terms:
    • Abstract:
      As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
      (© 2023 Federation of European Biochemical Societies.)
    • References:
      Mizushima N & Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147, 728–741.
      Klionsky DJ, Abdel‐Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo‐Arozena A et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 17, 1–382.
      Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín‐Segura A, Puri C, Scrivo A, Skidmore J et al. (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966.
      Meng Y, Heybrock S, Neculai D & Saftig P (2020) Cholesterol handling in lysosomes and beyond. Trends Cell Biol 30, 452–466.
      Eriksson I, Wäster P & Öllinger K (2020) Restoration of lysosomal function after damage is accompanied by recycling of lysosomal membrane proteins. Cell Death Dis 11, 370.
      Levine B & Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132, 27–42.
      Gianesello L, Del Prete D, Ceol M, Priante G, Calò LA & Anglani F (2020) From protein uptake to Dent disease: an overview of the CLCN5 gene. Gene 747, 144662.
      Fedele AO, Filocamo M, Di Rocco M, Sersale G, Lübke T, di Natale P, Cosma MP & Ballabio A (2007) Mutational analysis of the HGSNAT gene in Italian patients with mucopolysaccharidosis IIIC (Sanfilippo C syndrome). Mutation in brief #959. Online. Hum Mutat 28, 523.
      Hopfner F, Mueller SH, Szymczak S, Junge O, Tittmann L, May S, Lohmann K, Grallert H, Lieb W, Strauch K et al. (2020) Rare variants in specific lysosomal genes are associated with Parkinson's disease. Mov Disord 35, 1245–1248.
      Geng MY, Wang L, Song YY, Gu J, Hu X, Yuan C, Yang M, Pei W‐J, Zhang Y & Gao J‐L (2021) Sidt2 is a key protein in the autophagy‐lysosomal degradation pathway and is essential for the maintenance of kidney structure and filtration function. Cell Death Dis 13, 7.
      Jin YY, Huang LM, Quan XF & Mao JH (2021) Dent disease: classification, heterogeneity and diagnosis. World J Pediatr 17, 52–57.
      Feng Y, He D, Yao Z & Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24, 24–41.
      Xu Y & Yang X (2022) Autophagy and pluripotency: self‐eating your way to eternal youth. Trends Cell Biol 32, 868–882.
      Zhang H, Pang Y, Ma C, Li J, Wang H & Shao Z (2018) ClC5 decreases the sensitivity of multiple myeloma cells to bortezomib via promoting prosurvival autophagy. Oncol Res 26, 421–429.
      Pacheco CD & Lieberman AP (2007) Lipid trafficking defects increase Beclin‐1 and activate autophagy in Niemann‐Pick type C disease. Autophagy 3, 487–489.
      Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama‐Noda K, Ichimura T, Isobe T et al. (2009) Two Beclin 1‐binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385–396.
      Tan X, Thapa N, Sun Y & Anderson RA (2015) A kinase‐independent role for EGF receptor in autophagy initiation. Cell 160, 145–160.
      Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW & Srivastava S (2000) A novel androgen‐regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics 66, 257–263.
      Luo S, Yang M, Lv D, Jing L, Li Y, Liu Z & Diao A (2016) TMEPAI increases lysosome stability and promotes autophagy. Int J Biochem Cell Biol 76, 98–106.
      Wyant GA, Abu‐Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, Heiden MGV & Sabatini DM (2017) mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12.
      Nnah IC, Wang B, Saqcena C, Weber GF, Bonder EM, Bagley D, De Cegli R, Napolitano G, Medina DL, Ballabio A et al. (2019) TFEB‐driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy 15, 151–164.
      Chan EY (2009) mTORC1 phosphorylates the ULK1‐mAtg13‐FIP200 autophagy regulatory complex. Sci Signal 2, pe51.
      Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M et al. (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481.
      Verdon Q, Boonen M, Ribes C, Jadot M, Gasnier B & Sagné C (2017) SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein‐dependent growth of cancer cells. Proc Natl Acad Sci USA 114, E3602–E3611.
      Meng D, Yang Q, Jeong MH, Curukovic A, Tiwary S, Melick CH, Lama‐Sherpa TD, Wang H, Huerta‐Rosario M, Urquhart G et al. (2022) SNAT7 regulates mTORC1 via macropinocytosis. Proc Natl Acad Sci USA 119, e2123261119.
      Kaufmann A & Wollert T (2014) Scaffolding the expansion of autophagosomes. Autophagy 10, 1343–1345.
      Nair U, Yen WL, Mari M, Cao Y, Xie Z, Baba M, Reggiori F & Klionsky DJ (2012) A role for Atg8‐PE deconjugation in autophagosome biogenesis. Autophagy 8, 780–793.
      Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y & Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720–5728.
      Hirata E, Ohya Y & Suzuki K (2017) Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS One 12, e0181047.
      Lamb CA, Yoshimori T & Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14, 759–774.
      Pshezhetsky AV (2016) Lysosomal storage of heparan sulfate causes mitochondrial defects, altered autophagy, and neuronal death in the mouse model of mucopolysaccharidosis III type C. Autophagy 12, 1059–1060.
      Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, Hyrc KL, Beatty WL, Yarasheski KE, Hruz PW et al. (2016) SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose‐induced autophagy. Sci Rep 6, 38586.
      Schiraldi C, Di Lernia I & De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20, 420–425.
      Jeong SJ, Stitham J, Evans TD, Zhang X, Rodriguez‐Velez A, Yeh YS, Tao J, Takabatake K, Epelman S, Lodhi IJ et al. (2021) Trehalose causes low‐grade lysosomal stress to activate TFEB and the autophagy‐lysosome biogenesis response. Autophagy 17, 3740–3752.
      Liang L, Wang H, Yao J, Wei Q, Lu Y, Wang T & Cao X (2022) NPC1 deficiency contributes to autophagy‐dependent ferritinophagy in HEI‐OC1 auditory cells. Front Mol Biosci 9, 952608.
      Liu F, Zhang WL, Meng HZ, Cai ZY & Yang MW (2017) Regulation of DMT1 on autophagy and apoptosis in osteoblast. Int J Med Sci 14, 275–283.
      Liu R, Ke H, Shao T, Qin Y & Zhao S (2020) TMEM150B is dispensable for oocyte maturation and female fertility in mouse. Sci Rep 10, 21381.
      Mrschtik M & Ryan KM (2016) Another DRAM involved in autophagy and cell death. Autophagy 12, 603–605.
      Zhu L, Li Q, Wang X, Liao J, Zhang W, Gao L, Liu Y, Zhang C, Zhang X, Rao J et al. (2019) THBS1 is a novel serum prognostic factors of acute myeloid leukemia. Front Oncol 9, 1567.
      Vanhoutte D, Schips TG, Vo A, Grimes KM, Baldwin TA, Brody MJ, Accornero F, Sargent MA & Molkentin JD (2021) Thbs1 induces lethal cardiac atrophy through PERK‐ATF4 regulated autophagy. Nat Commun 12, 3928.
      Adams J, Feuerborn M, Molina JA, Wilden AR, Adhikari B, Budden T & Lee SY (2019) Autophagy‐lysosome pathway alterations and alpha‐synuclein up‐regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Sci Rep 9, 151.
      Nair S, Strohecker AM, Persaud AK, Bissa B, Muruganandan S, McElroy C, Pathak R, Williams M, Raj R, Kaddoumi A et al. (2019) Adult stem cell deficits drive Slc29a3 disorders in mice. Nat Commun 10, 2943.
      Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, Yun H, Chung Y‐H, Hong KS, Choi J‐S et al. (2014) Secretion of a truncated osteopetrosis‐associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down‐regulation of the B lymphocyte‐induced maturation protein 1 (BLIMP1)‐nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem 289, 35868–35881.
      Héraud C, Griffiths A, Pandruvada SN, Kilimann MW, Pata M & Vacher J (2014) Severe neurodegeneration with impaired autophagy mechanism triggered by ostm1 deficiency. J Biol Chem 289, 13912–13925.
      Azhati B, Maolakuerban N, Ma T, Li X & Rexiati M (2020) Up‐regulation of DRAM2 promotes tolerance of bladder transitional cell carcinoma to gemcitabine. Arch Med Sci 16, 1207–1217.
      Kim JK, Lee HM, Park KS, Shin DM, Kim TS, Kim YS, Suh H‐W, Kim SY, Kim IS, Kim J‐M et al. (2017) MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy 13, 423–441.
      Murphy A, Tantisira KG, Soto‐Quirós ME, Avila L, Klanderman BJ, Lake S, Weiss ST & Celedón JC (2009) PRKCA: a positional candidate gene for body mass index and asthma. Am J Hum Genet 85, 87–96.
      Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P et al. (2017) Protein kinase C‐alpha suppresses autophagy and induces neural tube defects via miR‐129‐2 in diabetic pregnancy. Nat Commun 8, 15182.
      Huang C, Seino J, Wang L, Haga Y & Suzuki T (2015) Autophagy regulates the stability of sialin, a lysosomal sialic acid transporter. Biosci Biotechnol Biochem 79, 553–557.
      Dubois L, Pietrancosta N, Cabaye A, Fanget I, Debacker C, Gilormini PA, Dansette PM, Dairou J, Biot C, Froissart R et al. (2020) Amino acids bearing aromatic or heteroaromatic substituents as a new class of ligands for the lysosomal sialic acid transporter sialin. J Med Chem 63, 8231–8249.
      Seino J, Wang L, Harada Y, Huang C, Ishii K, Mizushima N & Suzuki T (2013) Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J Biol Chem 288, 26898–26907.
      Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T & Saftig P (2007) LIMP‐2 is a receptor for lysosomal mannose‐6‐phosphate‐independent targeting of beta‐glucocerebrosidase. Cell 131, 770–783.
      Sakane H, Urabe J, Nakahira S, Hino K, Miyata N & Akasaki K (2020) Involvement of lysosomal integral membrane protein‐2 in the activation of autophagy. Biochem Biophys Res Commun 533, 976–982.
      Zhao YG, Codogno P & Zhang H (2021) Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 22, 733–750.
      McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, de Stegmann DM, Bhogaraju S, Maddi K et al. (2015) PLEKHM1 regulates autophagosome‐lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57, 39–54.
      McEwan DG & Dikic I (2015) PLEKHM1: adapting to life at the lysosome. Autophagy 11, 720–722.
      Jia R, Guardia CM, Pu J, Chen Y & Bonifacino JS (2017) BORC coordinates encounter and fusion of lysosomes with autophagosomes. Autophagy 13, 1648–1663.
      Itakura E, Kishi‐Itakura C & Mizushima N (2012) The hairpin‐type tail‐anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269.
      Tian X, Zheng P, Zhou C, Wang X, Ma H, Ma W, Zhou X, Teng J & Chen J (2020) DIPK2A promotes STX17‐ and VAMP7‐mediated autophagosome‐lysosome fusion by binding to VAMP7B. Autophagy 16, 797–810.
      Zhang Y & Hughson FM (2021) Chaperoning SNARE folding and assembly. Annu Rev Biochem 90, 581–603.
      Wang Y, Zeng W, Lin B, Yao Y, Li C, Hu W, Wu H, Huang J, Zhang M, Xue T et al. (2021) CLN7 is an organellar chloride channel regulating lysosomal function. Sci Adv 7, eabj9608.
      Brandenstein L, Schweizer M, Sedlacik J, Fiehler J & Storch S (2016) Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet 25, 777–791.
      Liedtke M, Völkner C, Hermann A & Frech MJ (2022) Impact of organelle transport deficits on mitophagy and autophagy in Niemann‐Pick disease type C. Cell 11, 507.
      Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, Cohen MA, Chakraborty S, Wang H, Spooner E et al. (2013) Impaired autophagy in the lipid‐storage disorder Niemann‐Pick type C1 disease. Cell Rep 5, 1302–1315.
      Feng T, Lacrampe A & Hu F (2021) Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 141, 327–339.
      Werner G, Damme M, Schludi M, Gnörich J, Wind K, Fellerer K, Wefers B, Wurst W, Edbauer D, Brendel M et al. (2020) Loss of TMEM106B potentiates lysosomal and FTLD‐like pathology in progranulin‐deficient mice. EMBO Rep 21, e50241.
      Nagelkerke A, Sieuwerts AM, Bussink J, Sweep FC, Look MP, Foekens JA, Martens JWM & Span PN (2014) LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr Relat Cancer 21, 101–112.
      Hurwitz SN, Cheerathodi MR, Nkosi D, York SB & Meckes DG Jr (2018) Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein‐Barr virus LMP1. J Virol 92, e01969‐17.
      Tan J, Zhang J, Wang M, Wang Y, Dong M, Ma X, Sun B, Liu S, Zhao Z, Chen L et al. (2022) DRAM1 increases the secretion of PKM2‐enriched EVs from hepatocytes to promote macrophage activation and disease progression in ALD. Mol Ther Nucleic Acids 27, 375–389.
      Yu M, Jiang Y, Feng Q, Ouyang Y & Gan J (2014) DRAM1 protects neuroblastoma cells from oxygen‐glucose deprivation/reperfusion‐induced injury via autophagy. Int J Mol Sci 15, 19253–19264.
      Klein M, Kaleem A, Oetjen S, Wünkhaus D, Binkle L, Schilling S, Gjorgjieva M, Scholz R, Gruber‐Schoffnegger D, Storch S et al. (2022) Converging roles of PSENEN/PEN2 and CLN3 in the autophagy‐lysosome system. Autophagy 18, 2068–2085.
      Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S, Lin Y, Wang X, Ding Z, Qiu S et al. (2023) Genome‐scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy 19, 1184–1198.
      Schmiege P, Fine M, Blobel G & Li X (2017) Human TRPML1 channel structures in open and closed conformations. Nature 550, 366–370.
      Xing Y, Wei X, Liu Y, Wang MM, Sui Z, Wang X, Zhu W, Wu M, Lu C, Fei Y‐H et al. (2022) Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS‐driven TP53/p53 pathway. Autophagy 18, 1932–1954.
      Garg S, Sharma M, Ung C, Tuli A, Barral DC, Hava DL, Veerapen N, Besra GS, Hacohen N & Brenner MB (2011) Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf‐like GTPase Arl8b. Immunity 35, 182–193.
      Guo H, Zhao M, Qiu X, Deis JA, Huang H, Tang QQ & Chen X (2016) Niemann‐Pick type C2 deficiency impairs autophagy‐lysosomal activity, mitochondrial function, and TLR signaling in adipocytes. J Lipid Res 57, 1644–1658.
      Eskelinen EL (2006) Roles of LAMP‐1 and LAMP‐2 in lysosome biogenesis and autophagy. Mol Aspects Med 27, 495–502.
      Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, Calenda C, Kodys K & Szabo G (2019) Dysregulated autophagy and lysosome function are linked to exosome production by micro‐RNA 155 in alcoholic liver disease. Hepatology 70, 2123–2141.
      Chi C, Leonard A, Knight WE, Beussman KM, Zhao Y, Cao Y, Londono P, Aune E, Trembley MA, Small EM et al. (2019) LAMP‐2B regulates human cardiomyocyte function by mediating autophagosome‐lysosome fusion. Proc Natl Acad Sci USA 116, 556–565.
      Dice JF (2007) Chaperone‐mediated autophagy. Autophagy 3, 295–299.
      Konecki DS, Foetisch K, Zimmer KP, Schlotter M & Lichter‐Konecki U (1995) An alternatively spliced form of the human lysosome‐associated membrane protein‐2 gene is expressed in a tissue‐specific manner. Biochem Biophys Res Commun 215, 757–767.
      Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A, Tamai Y, Wada K et al. (2013) Discovery of a novel type of autophagy targeting RNA. Autophagy 9, 403–409.
      Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, Uchida K, Wada K & Kabuta T (2013) Direct uptake and degradation of DNA by lysosomes. Autophagy 9, 1167–1171.
      Endo Y, Furuta A & Nishino I (2015) Danon disease: a phenotypic expression of LAMP‐2 deficiency. Acta Neuropathol 129, 391–398.
      Tan X, Sun Y, Thapa N, Liao Y, Hedman AC & Anderson RA (2015) LAPTM4B is a PtdIns(4,5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J 34, 475–490.
      Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X et al. (2020) Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury. Circ Res 127, e148–e165.
      Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez‐Vicente M, Massey AC, Sovak G et al. (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer‐related PS1 mutations. Cell 141, 1146–1158.
      Bustos V, Pulina MV, Bispo A, Lam A, Flajolet M, Gorelick FS & Greengard P (2017) Phosphorylated presenilin 1 decreases β‐amyloid by facilitating autophagosome‐lysosome fusion. Proc Natl Acad Sci USA 114, 7148–7153.
      Clarke AJ & Simon AK (2019) Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19, 170–183.
      Epple UD, Suriapranata I, Eskelinen EL & Thumm M (2001) Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183, 5942–5955.
      Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K & Thumm M (2000) The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 113 (Pt 22), 4025–4033.
      Huang WP & Klionsky DJ (2002) Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27, 409–420.
      Teter SA & Klionsky DJ (2000) Transport of proteins to the yeast vacuole: autophagy, cytoplasm‐to‐vacuole targeting, and role of the vacuole in degradation. Semin Cell Dev Biol 11, 173–179.
      Luzio JP, Pryor PR & Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8, 622–632.
      Tsuboyama K, Koyama‐Honda I, Sakamaki Y, Koike M, Morishita H & Mizushima N (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036–1041.
      Myerowitz R, Puertollano R & Raben N (2021) Impaired autophagy: the collateral damage of lysosomal storage disorders. EBioMedicine 63, 103166.
      Jialin G, Xuefan G & Huiwen Z (2010) SID1 transmembrane family, member 2 (Sidt2): a novel lysosomal membrane protein. Biochem Biophys Res Commun 402, 588–594.
      Tomer Y, Wambach J, Knudsen L, Zhao M, Rodriguez LR, Murthy A, White FV, Venosa A, Katzen J, Ochs M et al. (2021) The common ABCA3(E292V) variant disrupts AT2 cell quality control and increases susceptibility to lung injury and aberrant remodeling. Am J Physiol Lung Cell Mol Physiol 321, L291–l307.
      Gao L, Guo S, Long R, Xiao L, Yao R, Zheng X, Zhang Y & Wang X (2021) Lysosomal‐associated protein transmembrane 5 functions as a novel negative regulator of pathological cardiac hypertrophy. Front Cardiovasc Med 8, 740526.
      Inoue J, Misawa A, Tanaka Y, Ichinose S, Sugino Y, Hosoi H, Sugimoto T, Imoto I & Inazawa J (2009) Lysosomal‐associated protein multispanning transmembrane 5 gene (LAPTM5) is associated with spontaneous regression of neuroblastomas. PLoS One 4, e7099.
      Gao J, Xia L, Lu M, Zhang B, Chen Y, Xu R & Wang L (2012) TM7SF1 (GPR137B): a novel lysosome integral membrane protein. Mol Biol Rep 39, 8883–8889.
      Hu Y, Wang Y, Zhang X, Jin X, Pei W, Wang L, Zhang Y & Gao J (2020) TM7SF1, an important autophagy regulatory protein in mouse podocytes. Biochem Biophys Res Commun 528, 213–219.
      Wang WT, Han C, Sun YM, Chen ZH, Fang K, Huang W, Sun L‐Y, Zeng Z‐C, Luo X‐Q & Chen Y‐Q (2019) Activation of the lysosome‐associated membrane protein LAMP5 by DOT1L serves as a bodyguard for MLL fusion oncoproteins to evade degradation in leukemia. Clin Cancer Res 25, 2795–2808.
      Jamalpoor A, van Gelder CA, Yousef Yengej FA, Zaal EA, Berlingerio SP, Veys KR, Casellas CP, Voskuil K, Essa K, Ammerlaan CM et al. (2021) Cysteamine‐bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med 13, e13067.
      Pamarthy S, Kulshrestha A, Katara GK & Beaman KD (2018) The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer 17, 41.
      Formica M, Storaci AM, Bertolini I, Carminati F, Knævelsrud H, Vaira V & Vaccari T (2021) V‐ATPase controls tumor growth and autophagy in a Drosophila model of gliomagenesis. Autophagy 17, 4442–4452.
      Oyer HM, Sanders CM & Kim FJ (2019) Small‐molecule modulators of Sigma1 and Sigma2/TMEM97 in the context of cancer: foundational concepts and emerging themes. Front Pharmacol 10, 1141.
      Shen H, Li J, Heisler‐Taylor T, Makin R, Yang H, Mavlyutov TA, Gelfand B, Cebulla CM & Guo L‐W (2021) TMEM97 ablation aggravates oxidant‐induced retinal degeneration. Cell Signal 86, 110078.
      Zhang TM, Liao L, Yang SY, Huang MY, Zhang YL, Deng L, Hu S‐Y, Yang F, Zhang F‐L, Shao Z‐M et al. (2023) TOLLIP‐mediated autophagic degradation pathway links the VCP‐TMEM63A‐DERL1 signaling axis to triple‐negative breast cancer progression. Autophagy 19, 805–821.
      Cang C, Aranda K, Seo YJ, Gasnier B & Ren D (2015) TMEM175 is an organelle K(+) channel regulating lysosomal function. Cell 162, 1101–1112.
      Jinn S, Drolet RE, Cramer PE, Wong AH, Toolan DM, Gretzula CA, Voleti B, Vassileva G, Disa J, Tadin‐Strapps M et al. (2017) TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α‐synuclein aggregation. Proc Natl Acad Sci USA 114, 2389–2394.
      Harmand TJ, Pattabiraman VR & Bode JW (2017) Chemical synthesis of the highly hydrophobic antiviral membrane‐associated protein IFITM3 and modified variants. Angew Chem Int Ed Engl 56, 12639–12643.
      Jiang LQ, Xia T, Hu YH, Sun MS, Yan S, Lei CQ, Shu H‐B, Guo J‐H & Liu Y (2018) IFITM3 inhibits virus‐triggered induction of type I interferon by mediating autophagosome‐dependent degradation of IRF3. Cell Mol Immunol 15, 858–867.
      Liu J, Sadeh TT, Lippiat JD, Thakker RV, Black GC & Manson F (2021) Small molecules restore the function of mutant CLC5 associated with Dent disease. J Cell Mol Med 25, 1319–1322.
      Smith AJ & Lippiat JD (2010) Direct endosomal acidification by the outwardly rectifying CLC‐5 Cl(‐)/H(+) exchanger. J Physiol 588, 2033–2045.
      Qian H, Wu X, Du X, Yao X, Zhao X, Lee J, Yang H & Yan N (2020) Structural basis of low‐pH‐dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 182, 98–111.e18.
      Elrick MJ, Yu T, Chung C & Lieberman AP (2012) Impaired proteolysis underlies autophagic dysfunction in Niemann‐Pick type C disease. Hum Mol Genet 21, 4876–4887.
      Yoon HJ, Jeong H, Lee HH & Jang S (2021) Molecular dynamics study with mutation shows that N‐terminal domain structural re‐orientation in Niemann‐Pick type C1 is required for proper alignment of cholesterol transport. J Neurochem 156, 967–978.
      Liu Y, Zhang QY, Qian N & Zhou RL (2007) Relationship between LAPTM4B gene polymorphism and susceptibility of gastric cancer. Ann Oncol 18, 311–316.
      Blom T, Li S, Dichlberger A, Bäck N, Kim YA, Loizides‐Mangold U, Riezman H, Bittman R & Ikonen E (2015) LAPTM4B facilitates late endosomal ceramide export to control cell death pathways. Nat Chem Biol 11, 799–806.
      Hägglund MG, Sreedharan S, Nilsson VC, Shaik JH, Almkvist IM, Bäcklin S, Wrange O & Fredriksson R (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286, 20500–20511.
      Arbabi A, Spencer Noakes L, Vousden D, Dazai J, Spring S, Botelho O, Keshavarzian T, Mattingly M, Ellegood JE, Nutter LMJ et al. (2022) Multiple‐mouse magnetic resonance imaging with cryogenic radiofrequency probes for evaluation of brain development. Neuroimage 252, 119008.
      Lee DH, Gan PY, Katerelos M, Fraser SA, Gleich K, Holdsworth SR & Power DA (2014) Absence of the lysosomal protein Limp‐2 attenuates renal injury in crescentic glomerulonephritis. Immunol Cell Biol 92, 400–408.
      Peters J, Rittger A, Weisner R, Knabbe J, Zunke F, Rothaug M, Damme M, Berkovic SF, Blanz J, Saftig P et al. (2015) Lysosomal integral membrane protein type‐2 (LIMP‐2/SCARB2) is a substrate of cathepsin‐F, a cysteine protease mutated in type‐B‐Kufs‐disease. Biochem Biophys Res Commun 457, 334–340.
      Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Kim YA, Collins R, Trimble W et al. (2019) Lysosomal integral membrane protein‐2 (LIMP‐2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun 10, 3521.
      Morgan NV, Morris MR, Cangul H, Gleeson D, Straatman‐Iwanowska A, Davies N, Keenan S, Pasha S, Rahman F, Gentle D et al. (2010) Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai‐Dorfman disease. PLoS Genet 6, e1000833.
      Carayannopoulos MO, Chi MM, Cui Y, Pingsterhaus JM, McKnight RA, Mueckler M, Devaskar SU & Moley KH (2000) GLUT8 is a glucose transporter responsible for insulin‐stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci USA 97, 7313–7318.
      Augustin R, Riley J & Moley KH (2005) GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic 6, 1196–1212.
      Schmidt S, Joost HG & Schürmann A (2009) GLUT8, the enigmatic intracellular hexose transporter. Am J Physiol Endocrinol Metab 296, E614–E618.
      Novelle MG, Bravo SB, Deshons M, Iglesias C, García‐Vence M, Annells R, da Silva Lima N, Nogueiras R, Fernández‐Rojo MA, Diéguez C et al. (2021) Impact of liver‐specific GLUT8 silencing on fructose‐induced inflammation and omega oxidation. iScience 24, 102071.
      Kang T, Huang H, Mandrup‐Poulsen T & Larsen MR (2021) Divalent metal transporter 1 knock‐down modulates IL‐1β mediated pancreatic beta‐cell pro‐apoptotic signaling pathways through the autophagic machinery. Int J Mol Sci 22, 8013.
      Manatschal C, Pujol‐Giménez J, Poirier M, Reymond JL, Hediger MA & Dutzler R (2019) Mechanistic basis of the inhibition of SLC11/NRAMP‐mediated metal ion transport by bis‐isothiourea substituted compounds. Elife 8, e51913.
      Jing X, Lin J, Du T, Jiang Z, Li T, Wang G, Liu X, Cui X & Sun K (2020) Iron overload is associated with accelerated progression of osteoarthritis: the role of DMT1 mediated iron homeostasis. Front Cell Dev Biol 8, 594509.
      Park SM, Kim K, Lee EJ, Kim BK, Lee TJ, Seo T, Jang I‐S, Lee S‐H, Kim S, Lee J‐H et al. (2009) Reduced expression of DRAM2/TMEM77 in tumor cells interferes with cell death. Biochem Biophys Res Commun 390, 1340–1344.
      Chen P, Yang Y, Zhang Y, Jiang S, Li X & Wan J (2020) Identification of prognostic immune‐related genes in the tumor microenvironment of endometrial cancer. Aging (Albany NY) 12, 3371–3387.
      Mrschtik M, O'Prey J, Lao LY, Long JS, Beaumatin F, Strachan D, O'Prey M, Skommer J & Ryan KM (2015) DRAM‐3 modulates autophagy and promotes cell survival in the absence of glucose. Cell Death Differ 22, 1714–1726.
      Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, van der Spek PJ et al. (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 23, 462–465.
      Wolf FW, Eddy RL, Shows TB & Dixit VM (1990) Structure and chromosomal localization of the human thrombospondin gene. Genomics 6, 685–691.
      Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES & Peltonen L (1998) CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet 19, 286–288.
      McLaren MD, Mathavarajah S, Kim WD, Yap SQ & Huber RJ (2021) Aberrant autophagy impacts growth and multicellular development in a Dictyostelium knockout model of CLN5 disease. Front Cell Dev Biol 9, 657406.
      Schmiedt ML, Bessa C, Heine C, Ribeiro MG, Jalanko A & Kyttälä A (2010) The neuronal ceroid lipofuscinosis protein CLN5: new insights into cellular maturation, transport, and consequences of mutations. Hum Mutat 31, 356–365.
      Ligeon LA, Moreau K, Barois N, Bongiovanni A, Lacorre DA, Werkmeister E, Proux‐Gillardeaux V, Galli T & Lafont F (2014) Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3‐associated pathways involving single‐ or double‐membrane vacuoles. Autophagy 10, 1588–1602.
      Meng D, Jin H, Zhang X, Yan W, Xia Q, Shen S, Xie S, Cui M, Ding B, Gu Y et al. (2021) Identification of autophagy‐related risk signatures for the prognosis, diagnosis, and targeted therapy in cervical cancer. Cancer Cell Int 21, 362.
      Cárcel‐Trullols J, Kovács AD & Pearce DA (2017) Role of the lysosomal membrane protein, CLN3, in the regulation of cathepsin D activity. J Cell Biochem 118, 3883–3890.
      de los Reyes E, Dyken PR, Phillips P, Brodsky M, Bates S, Glasier C & Mark RE (2004) Profound infantile neuroretinal dysfunction in a heterozygote for the CLN3 genetic defect. J Child Neurol 19, 42–46.
      Steenhuis P, Herder S, Gelis S, Braulke T & Storch S (2010) Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic 11, 987–1000.
      Adra CN, Zhu S, Ko JL, Guillemot JC, Cuervo AM, Kobayashi H, Horiuchi T, Lelias JM, Rowley JD & Lim B (1996) LAPTM5: a novel lysosomal‐associated multispanning membrane protein preferentially expressed in hematopoietic cells. Genomics 35, 328–337.
      Li T, Wang W, Gan W, Lv S, Zeng Z, Hou Y, Yan Z, Zhang R & Yang M (2022) Comprehensive bioinformatics analysis identifies LAPTM5 as a potential blood biomarker for hypertensive patients with left ventricular hypertrophy. Aging (Albany NY) 14, 1508–1528.
      Chen L, Wang G, Luo Y, Wang Y, Xie C, Jiang W, Xiao Y, Qian G & Wang X (2017) Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells. Int J Oncol 50, 263–271.
      Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC et al. (2022) Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 18, 2443–2458.
      Levine B & Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42.
      Sudhakar JN, Lu HH, Chiang HY, Suen CS, Hwang MJ, Wu SY, Shen C‐N, Chang Y‐M, Li F‐A, Liu F‐T et al. (2020) Lumenal Galectin‐9‐Lamp2 interaction regulates lysosome and autophagy to prevent pathogenesis in the intestine and pancreas. Nat Commun 11, 4286.
      Kanao H, Enomoto T, Kimura T, Fujita M, Nakashima R, Ueda Y, Ueno Y, Miyatake T, Yoshizaki T, Buzard GS et al. (2005) Overexpression of LAMP3/TSC403/DC‐LAMP promotes metastasis in uterine cervical cancer. Cancer Res 65, 8640–8645.
      Tanaka T, Warner BM, Michael DG, Nakamura H, Odani T, Yin H, Atsumi T, Noguchi M & Chiorini JA (2022) LAMP3 inhibits autophagy and contributes to cell death by lysosomal membrane permeabilization. Autophagy 18, 1629–1647.
      Cheerathodi M, Nkosi D, Cone AS, York SB & Meckes DG Jr (2021) Epstein‐Barr virus LMP1 modulates the CD63 interactome. Viruses 13, 675.
      Nishibori M, Cham B, McNicol A, Shalev A, Jain N & Gerrard JM (1993) The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky‐Pudlak syndrome, and appears identical to granulophysin. J Clin Invest 91, 1775–1782.
      Fine M, Schmiege P & Li X (2018) Structural basis for PtdInsP(2)‐mediated human TRPML1 regulation. Nat Commun 9, 4192.
      Di Paola S, Scotto‐Rosato A & Medina DL (2018) TRPML1: the Ca((2+))retaker of the lysosome. Cell Calcium 69, 112–121.
      Adnan G, Rubikaite A, Khan M, Reber M, Suetterlin P, Hindges R & Drescher U (2020) The GTPase Arl8B plays a principle role in the positioning of interstitial axon branches by spatially controlling autophagosome and lysosome location. J Neurosci 40, 8103–8118.
      Michelet X, Tuli A, Gan H, Geadas C, Sharma M, Remold HG & Brenner MB (2018) Lysosome‐mediated plasma membrane repair is dependent on the small GTPase Arl8b and determines cell death type in Mycobacterium tuberculosis infection. J Immunol 200, 3160–3169.
      Khatter D, Sindhwani A & Sharma M (2015) Arf‐like GTPase Arl8: moving from the periphery to the center of lysosomal biology. Cell Logist 5, e1086501.
      Liedtke M, Völkner C, Jürs AV, Peter F, Rabenstein M, Hermann A & Frech MJ (2021) Pathophysiological in vitro profile of neuronal differentiated cells derived from Niemann‐Pick disease type C2 patient‐specific iPSCs carrying the NPC2 mutations c.58G>T/c.140G>T. Int J Mol Sci 22, 4009.
      Gallala HD, Breiden B & Sandhoff K (2011) Regulation of the NPC2 protein‐mediated cholesterol trafficking by membrane lipids. J Neurochem 116, 702–707.
      Zhang S, Cai F, Wu Y, Bozorgmehr T, Wang Z, Zhang S, Huang D, Guo J, Shen L, Rankin C et al. (2020) A presenilin‐1 mutation causes Alzheimer disease without affecting Notch signaling. Mol Psychiatry 25, 603–613.
      Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae H‐G, Cho Y, Kim HK, Sul JH et al. (2021) Alzheimer's disease‐causing presenilin‐1 mutations have deleterious effects on mitochondrial function. Theranostics 11, 8855–8873.
      Root J, Merino P, Nuckols A, Johnson M & Kukar T (2021) Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 154, 105360.
      Gao J, Zhang Y, Yu C, Tan F & Wang L (2016) Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice. Biochem Biophys Res Commun 476, 326–332.
      Kröner C, Wittmann T, Reu S, Teusch V, Klemme M, Rauch D, Hengst M, Kappler M, Cobanoglu N, Sismanlar T et al. (2017) Lung disease caused by ABCA3 mutations. Thorax 72, 213–220.
      Rindler TN, Stockman CA, Filuta AL, Brown KM, Snowball JM, Zhou W, Veldhuizen R, Zink EM, Dautel SE, Clair G et al. (2017) Alveolar injury and regeneration following deletion of ABCA3. JCI Insight 2, e97381.
      Kalatzis V, Cherqui S, Antignac C & Gasnier B (2001) Cystinosin, the protein defective in cystinosis, is a H(+)‐driven lysosomal cystine transporter. EMBO J 20, 5940–5949.
      Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP et al. (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18, 319–324.
      Mijaljica D, Prescott M & Devenish RJ (2011) V‐ATPase engagement in autophagic processes. Autophagy 7, 666–668.
      Ochotny N, Voronov I, Owen C, Aubin JE & Manolson MF (2013) The R740S mutation in the V‐ATPase a3 subunit results in osteoclast apoptosis and defective early‐stage autophagy. J Cell Biochem 114, 2823–2833.
      Izzo NJ, Colom‐Cadena M, Riad AA, Xu J, Singh M, Abate C, Cahill MA, Spires‐Jones TL, Bowen WD, Mach RH et al. (2020) Proceedings from the fourth international symposium on σ‐2 receptors: role in health and disease. eNeuro 7, ENEURO.0317‐20.2020.
      Wu X, Zhou F, Ji X, Ren K, Shan Y, Mao X, Fen Y, Chen R, Ding H & Fu X (2017) The prognostic role of MAC30 in advanced gastric cancer patients receiving platinum‐based chemotherapy. Future Oncol 13, 2691–2696.
      Spangenberg C, Winterpacht A, Zabel BU & Löbbert RW (1998) Cloning and characterization of a novel gene (TM7SF1) encoding a putative seven‐pass transmembrane protein that is upregulated during kidney development. Genomics 48, 178–185.
      Li Y, Yuan C, Wang L, Lu M, Wang Y, Wen Y, Yan RF, Xu LX, Song XK & Li XR (2016) Transmembrane protein 147 (TMEM147): another partner protein of Haemonchus contortus galectin on the goat peripheral blood mononuclear cells (PBMC). Parasit Vectors 9, 355.
      Senkevich K & Gan‐Or Z (2020) Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics. Parkinsonism Relat Disord 73, 60–71.
      Lee C, Guo J, Zeng W, Kim S, She J, Cang C, Ren D & Jiang Y (2017) The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature 547, 472–475.
      Gracia‐Maldonado G, Clark J, Burwinkel M, Greenslade B, Wunderlich M, Salomonis N, Leone D, Gatti E, Pierre P, Kumar AR et al. (2022) LAMP‐5 is an essential inflammatory‐signaling regulator and novel immunotherapy target for Mixed Lineage Leukemia‐Rearranged acute leukemia. Haematologica 107, 803–815.
      Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y et al. (2020) The innate immunity protein IFITM3 modulates γ‐secretase in Alzheimer's disease. Nature 586, 735–740.
    • Grant Information:
      81471002 National Natural Science Foundation of China; 81800766 National Natural Science Foundation of China; 2108085MH267 Natural Science Foundation of Anhui Province; PF2019013 'Climbing Peak' Training Program for Innovative Technology team of Yijishan Hospital; GF2019J07 'Peak' Training Program for Scientific Research of Yijishan Hospital; S202010368117 Anhui Province College Students' Innovation and Entrepreneurship Training Programme Project; WK2022XS50 Wannan Medical College Scientific Research Grant Program for university students
    • Contributed Indexing:
      Keywords: autophagy; autophagy‐related gene; disease; lysosomal membrane protein; lysosome
    • Accession Number:
      0 (Lysosomal Membrane Proteins)
    • Publication Date:
      Date Created: 20230524 Date Completed: 20241009 Latest Revision: 20241009
    • Publication Date:
      20250114
    • Accession Number:
      10.1111/febs.16820
    • Accession Number:
      37221945