Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.
      (© 2023. The Author(s).)
    • References:
      Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020). (PMID: 32284401719676610.1073/pnas.1919176117)
      Hayman, D. T. S. Bats as viral reservoirs. Annu. Rev. Virol. 3, 77–99 (2016). (PMID: 2757843710.1146/annurev-virology-110615-042203)
      Van Brussel, K. & Holmes, E. C. Zoonotic disease and virome diversity in bats. Curr. Opin. Virol. 52, 192–202 (2022). (PMID: 3495466110.1016/j.coviro.2021.12.008)
      Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020). (PMID: 32528128728907110.1038/s41579-020-0394-z)
      Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2021).
      Li, Y. et al. Virome of bat guano from nine Northern California roosts. J. Virol. 95, e01713–e01720 (2021). (PMID: 33115864792510810.1128/JVI.01713-20)
      Wu, Z. et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10, 609–620 (2016). (PMID: 2626281810.1038/ismej.2015.138)
      Simon-Loriere, E. & Holmes, E. C. Why do RNA viruses recombine? Nat. Rev. Microbiol. 9, 617–626 (2011). (PMID: 21725337332478110.1038/nrmicro2614)
      Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019). (PMID: 3053194710.1038/s41579-018-0118-9)
      Plowright, R. K. et al. Ecological dynamics of emerging bat virus spillover. Proc. Biol. Sci. 282, 20142124 (2015). (PMID: 253924744262174)
      Shi, Y. et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6, 27 (2018). (PMID: 29402331579991010.1186/s40168-018-0409-4)
      Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016). (PMID: 2788075710.1038/nature20167)
      Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). (PMID: 32015507709541810.1038/s41586-020-2012-7)
      Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391.e14 (2021). (PMID: 34147139818829910.1016/j.cell.2021.06.008)
      Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e3 (2020). (PMID: 32416074721162710.1016/j.cub.2020.05.023)
      Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013). (PMID: 24172901538986410.1038/nature12711)
      Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017). (PMID: 29190287570862110.1371/journal.ppat.1006698)
      Shi, M. et al. Total infectome characterization of respiratory infections in pre-COVID-19 Wuhan, China. PLoS Pathog. 18, e1010259 (2022). (PMID: 35176118885350110.1371/journal.ppat.1010259)
      Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019). (PMID: 31495335674628110.1080/22221751.2019.1661217)
      Erickson, A. K. et al. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23, 77–88.e5 (2018). (PMID: 2929057510.1016/j.chom.2017.11.007)
      Geoghegan, J. L., Duchene, S. & Holmes, E. C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 13, e1006215 (2017). (PMID: 28178344531982010.1371/journal.ppat.1006215)
      Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017). (PMID: 28555073579153410.1038/nrmicro.2017.45)
      Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329, 676–679 (2010). (PMID: 2068901510.1126/science.1188836)
      Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). (PMID: 32015508709494310.1038/s41586-020-2008-3)
      Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020). (PMID: 32841599741870410.1016/j.cell.2020.08.012)
      Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 101, 925–940 (2020). (PMID: 32568027765474810.1099/jgv.0.001453)
      Gussow, A. B. et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc. Natl Acad. Sci. 117, 15193–15199 (2020). (PMID: 32522874733449910.1073/pnas.2008176117)
      Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003). (PMID: 1269009110.1056/NEJMoa030747)
      Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003). (PMID: 1295836610.1126/science.1087139)
      Gong, L. et al. A new bat-HKU2–like coronavirus in Swine, China, 2017. Emerg. Infect. Dis. J. 23, 1607–1609 (2017). (PMID: 10.3201/eid2309.170915)
      Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018). (PMID: 29618817709498310.1038/s41586-018-0010-9)
      Parashar, U., Gibson, C., Bresee, J. & Glass, R. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis. J. 12, 304–306 (2006). (PMID: 10.3201/eid1202.050006)
      Anderson, E. J. & Weber, S. G. Rotavirus infection in adults. Lancet Infect. Dis. 4, 91–99 (2004). (PMID: 14871633710650710.1016/S1473-3099(04)00928-4)
      Thimmasandra Narayanappa, A. et al. A novel pathogenic mammalian orthoreovirus from diarrheic pigs and swine blood meal in the United States. mBio 6, e00593–00515 (2015). (PMID: 25991685444213510.1128/mBio.00593-15)
      Jiang, R.-D. et al. Bat mammalian orthoreoviruses cause severe pneumonia in mice. Virology 551, 84–92 (2020). (PMID: 3285939510.1016/j.virol.2020.05.014)
      Matthijnssens, J. et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-Like and bovine rotavirus strains. J. Virol. 82, 3204–3219 (2008). (PMID: 18216098226844610.1128/JVI.02257-07)
      Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015). (PMID: 2560979310.1093/bioinformatics/btv033)
      Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021). (PMID: 33828273802639910.1038/s41592-021-01101-x)
      Clewley, J. P. Macintosh sequence analysis software. Mol. Biotechnol. 3, 221–224 (1995). (PMID: 755269110.1007/BF02789332)
      Matthijnssens, J. et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 156, 1397–1413 (2011). (PMID: 21597953339899810.1007/s00705-011-1006-z)
      Matthijnssens, J. et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 153, 1621–1629 (2008). (PMID: 18604469255630610.1007/s00705-008-0155-1)
      Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 23329690360331810.1093/molbev/mst010)
      Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). (PMID: 19505945271234410.1093/bioinformatics/btp348)
      Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003). (PMID: 1453013610.1080/10635150390235520)
      Zhu, Y. et al. Clinical utility of a novel urine-based gene fusion TTTY15-USP9Y in predicting prostate biopsy outcome. Urol. Oncol. 33, 384.e9–20 (2015). (PMID: 2600859310.1016/j.urolonc.2015.01.019)
      Lam, H. M., Ratmann, O. & Boni, M. F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 35, 247–251 (2018). (PMID: 2902918610.1093/molbev/msx263)
      Lole Kavita, S. et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 73, 152–160 (1999). (PMID: 10381810.1128/JVI.73.1.152-160.1999)
      Sali, A. Comparative protein modeling by satisfaction of spatial restraints. Mol. Med. Today 1, 270–277 (1995). (PMID: 941516110.1016/S1357-4310(95)91170-7)
      Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020). (PMID: 3222517610.1038/s41586-020-2180-5)
      Shen, M.-y & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006). (PMID: 17075131224241410.1110/ps.062416606)
      Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). (PMID: 1835159110.1002/jcc.20945)
      Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). (PMID: 2781965810.1038/nmeth.4067)
      Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). (PMID: 10.1063/1.445869)
      Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015). (PMID: 10.1016/j.softx.2015.06.001)
      Temmam, S. et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022). (PMID: 3517232310.1038/s41586-022-04532-4)
      Bonomi, M. et al. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019). (PMID: 10.1038/s41592-019-0506-8)
      Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005). (PMID: 15980494116014810.1093/nar/gki387)
    • Grant Information:
      U01 AI151810 United States AI NIAID NIH HHS
    • Publication Date:
      Date Created: 20230710 Date Completed: 20230712 Latest Revision: 20230718
    • Publication Date:
      20231215
    • Accession Number:
      PMC10333379
    • Accession Number:
      10.1038/s41467-023-39835-1
    • Accession Number:
      37429936