Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Characterizing Precision Nutrition Discourse on Twitter: Quantitative Content Analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: JMIR Publications Country of Publication: Canada NLM ID: 100959882 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-8871 (Electronic) Linking ISSN: 14388871 NLM ISO Abbreviation: J Med Internet Res Subsets: MEDLINE
    • Publication Information:
      Publication: <2011- > : Toronto : JMIR Publications
      Original Publication: [Pittsburgh, PA? : s.n., 1999-
    • Subject Terms:
    • Abstract:
      Background: It is possible that tailoring dietary approaches to an individual's genomic profile could provide optimal dietary inputs for biological functioning and support adherence to dietary management protocols. The science required for such nutrigenetic and nutrigenomic profiling is not yet considered ready for broad application by the scientific and medical communities; however, many personalized nutrition products are available in the marketplace, creating the potential for hype and misleading information on social media. Twitter provides a unique big data source that provides real-time information. Therefore, it has the potential to disseminate evidence-based health information, as well as misinformation.
      Objective: We sought to characterize the landscape of precision nutrition content on Twitter, with a specific focus on nutrigenetics and nutrigenomics. We focused on tweet authors, types of content, and presence of misinformation.
      Methods: Twitter Archiver was used to capture tweets from September 1, 2020, to December 1, 2020, using keywords related to nutrition and genetics. A random sample of tweets was coded using quantitative content analysis by 4 trained coders. Codebook-driven, quantified information about tweet authors, content details, information quality, and engagement metrics were compiled and analyzed.
      Results: The most common categories of tweets were precision nutrition products and nutrigenomic concepts. About a quarter (132/504, 26.2%) of tweet authors presented themselves as science experts, medicine experts, or both. Nutrigenetics concepts most frequently came from authors with science and medicine expertise, and tweets about the influence of genes on weight were more likely to come from authors with neither type of expertise. A total of 14.9% (75/504) of the tweets were noted to contain untrue information; these were most likely to occur in the nutrigenomics concepts topic category.
      Conclusions: By evaluating social media discourse on precision nutrition on Twitter, we made several observations about the content available in the information environment through which individuals can learn about related concepts and products. Tweet content was consistent with the indicators of medical hype, and the inclusion of potentially misleading and untrue information was common. We identified a contingent of users with scientific and medical expertise who were active in discussing nutrigenomics concepts and products and who may be encouraged to share credible expert advice on precision nutrition and tackle false information as this technology develops.
      (©Sapna Batheja, Emma M Schopp, Samantha Pappas, Siri Ravuri, Susan Persky. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 12.10.2023.)
    • References:
      Genet Med. 2008 Nov;10(11):784-96. (PMID: 18941418)
      J Med Internet Res. 2017 Oct 13;19(10):e352. (PMID: 29030326)
      Public Health Genomics. 2019;22(5-6):162-173. (PMID: 31779000)
      J Health Commun. 2016 May;21(5):517-26. (PMID: 27115179)
      JAMA. 2020 Aug 25;324(8):735-736. (PMID: 32766768)
      OMICS. 2015 Sep;19(9):512-20. (PMID: 26348710)
      Front Digit Health. 2021 Jan 26;2:592237. (PMID: 34713062)
      BMJ Open. 2020 Nov 20;10(11):e040637. (PMID: 33444206)
      BMJ. 2018 Jun 13;361:bmj.k2173. (PMID: 29898881)
      Mol Nutr Food Res. 2022 Sep;66(17):e2200077. (PMID: 35770348)
      Public Underst Sci. 2019 Aug;28(6):696-712. (PMID: 31027461)
      Public Underst Sci. 2014 Nov;23(8):886-902. (PMID: 23825280)
      Nutr Diet. 2020 Jul;77(3):382-391. (PMID: 31749295)
      J Acad Nutr Diet. 2021 Mar;121(3):545-552. (PMID: 32624395)
      Eur J Nutr. 2013 Jun;52(4):1353-9. (PMID: 22948783)
      Transl Behav Med. 2016 Jun;6(2):277-84. (PMID: 27356998)
      J Health Commun. 2013;18(2):241-9. (PMID: 23194059)
      Nutrients. 2017 Aug 22;9(8):. (PMID: 28829397)
      PLoS One. 2014 Nov 14;9(11):e112665. (PMID: 25398084)
      J Acad Nutr Diet. 2021 Mar;121(3):582-605.e17. (PMID: 32624396)
      Nutr Diet. 2019 Jul;76(3):263-270. (PMID: 30693631)
      Public Health Nutr. 2023 Jul;26(7):1345-1357. (PMID: 37138366)
      Clin Gastroenterol Hepatol. 2015 Sep;13(9):1625-1632.e1. (PMID: 25769412)
      Account Res. 2012;19(5):285-307. (PMID: 23009269)
      J Nutrigenet Nutrigenomics. 2016;9(1):28-46. (PMID: 27286972)
      J Med Internet Res. 2021 Jan 20;23(1):e17187. (PMID: 33470931)
      Lifestyle Genom. 2018;11(3-6):155-162. (PMID: 31129669)
      Int J Epidemiol. 2017 Apr 1;46(2):578-588. (PMID: 27524815)
      J Acad Nutr Diet. 2014 Feb;114(2):299-312. (PMID: 24439821)
      Soc Sci Med. 2010 Mar;70(5):744-53. (PMID: 20022680)
      EFSA J. 2019 Jul 08;17(Suppl 1):e170713. (PMID: 32626450)
      Am J Clin Nutr. 2022 Mar 4;115(3):717-723. (PMID: 34791009)
      Public Health Genomics. 2018;21(1-2):93-99. (PMID: 30466105)
      J Am Diet Assoc. 2002 Jan;102(1):100-8. (PMID: 11794489)
      Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:3083-3088. (PMID: 35096472)
      JAMA. 2018 Feb 20;319(7):667-679. (PMID: 29466592)
      Eat Behav. 2017 Aug;26:93-98. (PMID: 28199907)
      J Med Internet Res. 2021 May 12;23(5):e17917. (PMID: 33978589)
      Malays J Med Sci. 2017 May;24(3):1-4. (PMID: 28814927)
      J Big Data. 2022;9(1):113. (PMID: 36465137)
      Eur J Clin Nutr. 2023 Jan;77(1):36-44. (PMID: 35444269)
      Med Clin North Am. 2018 Jan;102(1):183-197. (PMID: 29156185)
      J Acad Nutr Diet. 2021 Mar;121(3):553-581.e3. (PMID: 32624394)
      Public Underst Sci. 2021 Jan;30(1):75-90. (PMID: 32933450)
      Genet Med. 2018 Sep;20(9):950-956. (PMID: 29300377)
      Per Med. 2020 May 1;17(3):171-173. (PMID: 32329405)
      BMJ Nutr Prev Health. 2020 May 21;3(1):49-59. (PMID: 33235971)
    • Contributed Indexing:
      Keywords: Twitter; content analysis; credibility; misinformation; nutrigenetics; nutrigenomics; precision nutrition
    • Publication Date:
      Date Created: 20231012 Date Completed: 20231023 Latest Revision: 20231029
    • Publication Date:
      20250114
    • Accession Number:
      PMC10603558
    • Accession Number:
      10.2196/43701
    • Accession Number:
      37824190