Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Identification of reproductive sex-biased gene expression in Asparagopsis taxiformis (lineage 6) gametophytes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Periodicals Inc Country of Publication: United States NLM ID: 9882935 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-8817 (Electronic) Linking ISSN: 00223646 NLM ISO Abbreviation: J Phycol Subsets: MEDLINE
    • Publication Information:
      Publication: <2015-> : Malden, MA : Wiley Periodicals Inc.
      Original Publication: [New York] Phycological Society of America.
    • Subject Terms:
    • Abstract:
      The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g -1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g -1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.
      (© 2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.)
    • References:
      Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.
      Black, J. L., Davison, T. M., & Box, I. (2021). Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals, 11, 951.
      Buschmann, A. H., Camus, C., Infante, J., Neori, A., Israel, Á., Hernández‐González, M. C., Pereda, S. V., Gomez‐Pinchetti, J. L., Golberg, A., & Tadmor‐Shalev, N. (2017). Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. European Journal of Phycology, 52, 391–406.
      Charrier, B., Abreu, M. H., Araujo, R., Bruhn, A., Coates, J. C., De Clerck, O., Katsaros, C., Robaina, R. R., & Wichard, T. (2017). Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture. The New Phytologist, 216, 967–975.
      Coelho, S. M., Peters, A. F., Charrier, B., Roze, D., Destombe, C., Valero, M., & Cock, J. M. (2007). Complex life cycles of multicellular eukaryotes: New approaches based on the use of model organisms. Gene, 406(1–2), 152–170.
      Collén, J., Porcel, B., Carré, W., Ball, S. G., Chaparro, C., Tonon, T., Barbeyron, T., Michel, G., Noel, B., & Valentin, K. (2013). Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 110, 5247–5252.
      Darolti, I., Wright, A. E., Pucholt, P., Berlin, S., & Mank, J. E. (2018). Slow evolution of sex‐biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Molecular Ecology, 27, 694–708.
      Deputy, J., Ming, R., Ma, H., Liu, Z., Fitch, M., Wang, M., Manshardt, R., & Stiles, J. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). Theoretical and Applied Genetics, 106, 107–111.
      Ellegren, H., & Parsch, J. (2007). The evolution of sex‐biased genes and sex‐biased gene expression. Nature Reviews Genetics, 8, 689–698.
      Freitas, M. V., Inácio, L. G., Martins, M., Afonso, C., Pereira, L., & Mouga, T. (2022). Primary composition and pigments of 11 red seaweed species from the center of Portugal. Journal of Marine Science and Engineering, 10, 1168.
      Galindo‐Trigo, S., Gray, J. E., & Smith, L. M. (2016). Conserved roles of CrRLK1L receptor‐like kinases in cell expansion and reproduction from algae to angiosperms. Frontiers in Plant Science, 7, 1269.
      Garcia‐Jimenez, P., Llorens, C., Roig, F. J., & Robaina, R. R. (2018). Analysis of the transcriptome of the red seaweed Grateloupia imbricata with emphasis on reproductive potential. Marine Drugs, 16, 490.
      Garcia‐Jimenez, P., Montero‐Fernández, M., & Robaina, R. R. (2017). Molecular mechanisms underlying Grateloupia imbricata (Rhodophyta) carposporogenesis induced by methyl jasmonate. Journal of Phycology, 53, 1340–1344.
      Garcia‐Jimenez, P., Montero‐Fernández, M., & Robaina, R. R. (2018). Analysis of ethylene‐induced gene regulation during carposporogenesis in the red seaweed Grateloupia imbricata (Rhodophyta). Journal of Phycology, 54, 681–689.
      Garcia‐Jimenez, P., Rodrigo, M., & Robaina, R. R. (1998). Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Grateloupia cultured in vitro. Journal of Applied Phycology, 10, 95–100.
      Guillemin, M. L., Huanel, O. R., & Martínez, E. A. (2012). Characterization of genetic markers linked to sex determination in the haploid‐diploid red alga Gracilaria chilensis. Journal of Phycology, 48, 365–372.
      Guzmán‐Urióstegui, A., García‐Jiménez, P., Marián, F., Robledo, D., & Robaina, R. (2002). Polyamines influence maturation in reproductive structures of Gracilaria cornea (Gracilariales, Rhodophyta). Journal of Phycology, 38, 1169–1175.
      Harvey, S. H., Krien, M. J., & O'Connell, M. J. (2002). Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases. Genome Biology, 3, 1–5.
      Hatchett, W. J., Jueterbock, A. O., Kopp, M., Coyer, J. A., Coelho, S. M., Hoarau, G., & Lipinska, A. P. (2023). Evolutionary dynamics of sex‐biased gene expression in a young XY system: Insights from the brown alga genus Fucus. New Phytologist, 238, 422–437.
      Huang, J., Zheng, J., Yuan, H., & McGinnis, K. (2018). Distinct tissue‐specific transcriptional regulation revealed by gene regulatory networks in maize. BMC Plant Biology, 18, 1–14.
      Jeppsson, K., Kanno, T., Shirahige, K., & Sjögren, C. (2014). The maintenance of chromosome structure: Positioning and functioning of SMC complexes. Nature Reviews Molecular Cell Biology, 15, 601–614.
      Jia, Y., Quack, B., Kinley, R. D., Pisso, I., & Tegtmeier, S. (2022). Potential environmental impact of bromoform from Asparagopsis farming in Australia. Atmospheric Chemistry and Physics, 22, 7631–7646.
      Kamiya, M., Kawai, H., Moon, D., & Goff, L. J. (2011). Isolation and characterization of phase‐specific cDNAs from carposporophytes of Gracilariopsis andersonii (Gracilariales, Rhodophyta). European Journal of Phycology, 46, 27–35.
      Kessler, S. A., Lindner, H., Jones, D. S., & Grossniklaus, U. (2015). Functional analysis of related Cr RLK 1L receptor‐like kinases in pollen tube reception. EMBO Reports, 16, 107–115.
      Lavaut, E., Guillemin, M.‐L., Colin, S., Faure, A., Coudret, J., Destombe, C., & Valero, M. (2022). Pollinators of the sea: A discovery of animal‐mediated fertilization in seaweed. Science, 377, 528–530.
      Lipinska, A., Cormier, A., Luthringer, R., Peters, A. F., Corre, E., Gachon, C. M., Cock, J. M., & Coelho, S. M. (2015). Sexual dimorphism and the evolution of sex‐biased gene expression in the brown alga Ectocarpus. Molecular Biology and Evolution, 32, 1581–1597.
      Lipinska, A. P., Ahmed, S., Peters, A. F., Faugeron, S., Cock, J. M., & Coelho, S. M. (2015). Development of PCR‐based markers to determine the sex of kelps. PLoS ONE, 10, e0140535.
      Lipinska, A. P., Collén, J., Krueger‐Hadfield, S. A., Mora, T., & Ficko‐Blean, E. (2020). To gel or not to gel: Differential expression of carrageenan‐related genes between the gametophyte and tetasporophyte life cycle stages of the red alga Chondrus crispus. Scientific Reports, 10, 11498.
      Liu, X., Blomme, J., Bogaert, K. A., D'hondt, S., Wichard, T., Deforce, D., Van Nieuwerburgh, F., & De Clerck, O. (2022). Transcriptional dynamics of gametogenesis in the green seaweed Ulva mutabilis identifies an RWP‐RK transcription factor linked to reproduction. BMC Plant Biology, 22, 1–12.
      Liu, X., Bogaert, K., Engelen, A. H., Leliaert, F., Roleda, M. Y., & De Clerck, O. (2017). Seaweed reproductive biology: Environmental and genetic controls. Botanica Marina, 60, 89–108.
      Liu, Y. S., Li, L. H., Wu, W. K., & Zhou, Z. G. (2009). A SCAR molecular marker specifically related to the female gametophytes of Saccharina (laminaria) japonica (phaeophyta). Journal of Phycology, 45, 894–897.
      Magnusson, M., Vucko, M. J., Neoh, T. L., & de Nys, R. (2020). Using oil immersion to deliver a naturally‐derived, stable bromoform product from the red seaweed Asparagopsis taxiformis. Algal Research, 51, 102065.
      Martinez, E., Destombe, C., Quillet, M., & Valero, M. (1999). Identification of random amplified polymorphic DNA (RAPD) markers highly linked to sex determination in the red alga Gracilaria gracilis. Molecular Ecology, 8, 1533–1538.
      Martins, M. J. F., Mota, C. F., & Pearson, G. A. (2013). Sex‐biased gene expression in the brown alga Fucus vesiculosus. BMC Genomics, 14, 1–14.
      Monteiro, C., Heinrich, S., Bartsch, I., Valentin, K., Corre, E., Collén, J., Harms, L., Glöckner, G., & Bischof, K. (2019). Temperature modulates sex‐biased gene expression in the gametophytes of the kelp Saccharina latissim. Frontiers in Marine Science, 6, 769.
      Moy, G., Mendoza, L., Schulz, J., Swanson, W., Glabe, C., & Vacquier, V. (1996). The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. The Journal of Cell Biology, 133, 809–817.
      Müller, D. G., Gaschet, E., Godfroy, O., Gueno, J., Cossard, G., Kunert, M., Peters, A. F., Westermeier, R., Boland, W., & Cock, J. M. (2021). A partially sex‐reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system. The New Phytologist, 232, 252–263.
      Murphy, V. (2007). An investigation into the mechanisms of heavy metal binding by selected seaweed species [Ph.D. Dissertation, Waterford Institute of Technology].
      Nakamura, Y., Sasaki, N., Kobayashi, M., Ojima, N., Yasuike, M., Shigenobu, Y., Satomi, M., Fukuma, Y., Shiwaku, K., & Tsujimoto, A. (2013). The first symbiont‐free genome sequence of marine red alga, Susabi‐nori (Pyropia yezoensis). PLoS ONE, 8, e57122.
      Parsch, J., & Ellegren, H. (2013). The evolutionary causes and consequences of sex‐biased gene expression. Nature Reviews Genetics, 14, 83–87.
      Patwary, Z. P., Paul, N. A., Nishitsuji, K., Campbell, A. H., Shoguchi, E., Zhao, M., & Cummins, S. F. (2021). Application of omics research in seaweeds with a focus on red seaweeds. Briefings in Functional Genomics, 20, 148–161.
      Patwary, Z. P., Zhao, M., Wang, T., Paul, N. A., & Cummins, S. F. (2023). A proteomic analysis for the red seaweed Asparagopsis taxiformis. Biology, 12, 167.
      Paul, N. A., de Nys, R., & Steinberg, P. (2006). Chemical defence against bacteria in the red alga Asparagopsis armata: Linking structure with function. Marine Ecology Progress Series, 306, 87–101.
      Reamon‐Büttner, S. M., Schondelmaier, J., & Jung, C. (1998). AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Molecular Breeding, 4, 91–98.
      Romanazzi, D., Sanchez‐Garcia, C., Svenson, J., Mata, L., Pes, K., Hayman, C. M., Wheeler, T. T., & Magnusson, M. (2021). Rapid analytical method for the quantification of bromoform in the red seaweeds Asparagopsis armata and Asparagopsis taxiformis using gas chromatography–mass spectrometry. ACS Agricultural Science & Technology, 1, 436–442.
      Roque, B. M., Venegas, M., Kinley, R. D., de Nys, R., Duarte, T. L., Yang, X., & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE, 16, e0247820.
      Scharmann, M., Rebelo, A. G., & Pannell, J. R. (2021). High rates of evolution preceded shifts to sex‐biased gene expression in Leucadendron, the most sexually dimorphic angiosperms. eLife, 10, e67485.
      Searles, R. B. (1980). The strategy of the red algal life history. The American Naturalist, 115, 113–120.
      Shan, T. F., & Pang, S. J. (2010). Sex‐linked microsatellite marker detected in the female gametophytes of Undaria pinnatifida (Phaeophyta). Phycological Research, 58, 171–176.
      Shirkot, P., Sharma, D., & Mohapatra, T. (2002). Molecular identification of sex in Actinidia deliciosa var. deliciosa by RAPD markers. Scientia Horticulturae, 94, 33–39.
      Stratmann, J., Paputsoglu, G., & Oertel, W. (1996). Differentiation of Ulva mutabilis (chlorophyta) gametangia and gamete release are controlled by extracellular inhibitors. Journal of Phycology, 32, 1009–1021.
      Sugumaran, R., Padam, B. S., Yong, W. T. L., Saallah, S., Ahmed, K., & Yusof, N. A. (2022). A retrospective review of global commercial seaweed production—Current challenges, biosecurity and mitigation measures and prospects. International Journal of Environmental Research and Public Health, 19, 7087.
      Thapa, H. R., Lin, Z., Yi, D., Smith, J. E., Schmidt, E. W., & Agarwal, V. (2020). Genetic and biochemical reconstitution of bromoform biosynthesis in Asparagopsis lends insights into seaweed reactive oxygen species enzymology. ACS Chemical Biology, 15, 1662–1670.
      Uji, T., Endo, H., & Mizuta, H. (2020). Sexual reproduction via a 1‐aminocyclopropane‐1‐carboxylic acid‐dependent pathway through redox modulation in the marine red alga Pyropia yezoensis (Rhodophyta). Frontiers in Plant Science, 11, 60.
      Vergés, A., Paul, N. A., & Steinberg, P. D. (2008). Sex and life‐history stage alter herbivore responses to a chemically defended red alga. Ecology, 89, 1334–1343.
      Vucko, M. J., Magnusson, M., Kinley, R. D., Villart, C., & de Nys, R. (2017). The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. Journal of Applied Phycology, 29, 1577–1586.
      Xu, C., & Min, J. (2011). Structure and function of WD40 domain proteins. Protein & Cell, 2, 202–214.
      Yang, L., Zhang, Z., & He, S. (2016). Both male‐biased and female‐biased genes evolve faster in fish genomes. Genome Biology and Evolution, 8, 3433–3445.
      Zanolla, M., Carmona, R., & Altamirano, M. (2017). Reproductive ecology of an invasive lineage 2 population of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) in the Alboran Sea (western Mediterranean Sea). Botanica Marina, 60, 627–638.
      Zanolla, M., Carmona, R., Mata, L., De la Rosa, J., Sherwood, A., Barranco, C. N., Muñoz, A. R., & Altamirano, M. (2022). Concise review of the genus Asparagopsis Montagne, 1840. Journal of Applied Phycology, 34, 1–17.
      Zanolla, M., Romanazzi, D., Svenson, J., Sherwood, A., & Stengel, D. B. (2022). Bromoform, mycosporine‐like amino acids and phycobiliprotein content and stability in Asparagopsis armata during long‐term indoor cultivation. Journal of Applied Phycology, 34, 1635–1647.
      Zhao, M., Campbell, A., Patwary, Z. P., Wang, T., Lang, T., Webb, J., Zuccarello, G., Wegner, A., Heyne, D., McKinnie, L., Pascelli, C., Satoh, N., Shoguchi, E., Paul, N., & Cummins, S. (2022). The red seaweed Asparagopsis taxiformis genome and integrative‐omics analysis. Research Square [Preprint] https://doi.org/10.21203/rs.3.rs‐2232367/v1.
    • Grant Information:
      DP200103013 Australian Research Council
    • Contributed Indexing:
      Keywords: Asparagopsis taxiformis; gametophyte; gene expression; reproduction; sex‐associated genes
    • Accession Number:
      TUT9J99IMU (bromoform)
      63231-63-0 (RNA)
      0 (Trihalomethanes)
    • Subject Terms:
      Asparagopsis taxiformis
    • Publication Date:
      Date Created: 20231229 Date Completed: 20240411 Latest Revision: 20240415
    • Publication Date:
      20250114
    • Accession Number:
      10.1111/jpy.13419
    • Accession Number:
      38156746