Item request has been placed!
×
Item request cannot be made.
×

Molecular Analysis of Pseudomonas aeruginosa Isolates with Mutant gyrA Gene and Development of a New Ciprofloxacin Derivative for Antimicrobial Therapy.
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Alabdali YAJ;Alabdali YAJ; Azeez DA; Azeez DA; Munahi MG; Munahi MG; Kuwait ZI; Kuwait ZI
- Source:
Molecular biotechnology [Mol Biotechnol] 2025 Feb; Vol. 67 (2), pp. 649-660. Date of Electronic Publication: 2024 Feb 01.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
- Publication Information: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994- - Subject Terms: Pseudomonas aeruginosa*/genetics ; Pseudomonas aeruginosa*/drug effects ; Ciprofloxacin*/pharmacology ; Ciprofloxacin*/chemistry ; DNA Gyrase*/genetics ; DNA Gyrase*/metabolism ; DNA Gyrase*/chemistry ; Molecular Docking Simulation* ; Mutation* ; Drug Resistance, Bacterial*/genetics ; Drug Resistance, Bacterial*/drug effects ; Anti-Bacterial Agents*/pharmacology ; Anti-Bacterial Agents*/chemistry ; Microbial Sensitivity Tests*; Humans ; Female ; Male ; Adult ; Middle Aged ; Pseudomonas Infections/drug therapy ; Pseudomonas Infections/microbiology
- Abstract: This study focuses on the prevalence of Pseudomonas aeruginosa in various medical specimens. In addition, the investigates of this research shows the genetic analysis of pathogen-resistant isolates and chemical modifications to ciprofloxacin. A total of 225 specimens from men and women aged 30 to 60 were carefully collected and examined, including samples from wound, burn, urine, sputum, and ear samples. The data were obtained from AL Muthanna hospitals. PCR-RFLP and gene expression analysis were used to identify resistant strains and explore the genetic basis of antibiotic resistance. A ciprofloxacin derivative was synthesized and confirmed through FT-IR, 1 H-NMR, and mass spectroscopy techniques then it was tested as antibacterial agent. Also, molecular docking study was conducted to predict the mechanism of action for the synthesized derivative. The results demonstrated that wound samples had the highest positive rate (33.7%) of P. aeruginosa isolates. The PCR-RFLP testing correlated ciprofloxacin resistance with gyrA gene mutation. Gene expression analysis revealed significant changes in the gyrA gene expression in comparison to the reference rpsL gene subsequent to exposure to the synthesized derivative. Furthermore, the molecular docking investigation illustrated the strategic positioning of the ciprofloxacin derivative within the DNA-binding site of the gyrA enzyme. The examination of genetic expression patterns manifested diverse effects attributed to the CIP derivative on P. aeruginosa, thus portraying it as a viable candidate in the quest for the development of novel antimicrobial agents. Ciprofloxacin derivative may offer new antimicrobial therapeutic options for treating Pseudomonas aeruginosa infections in wound specimens, addressing resistance and gyrA gene mutations.
Competing Interests: Declarations. Conflict of interest: The authors claim no relevant conflicts of interest that affect the research. Ethical Approval: All procedures were conducted in strict adherence to the ethical standards of Al Muthanna University for the treatment of research subjects in Samawah, Iraq, following ethics- approval letter number 4513 in 4/11/2021. Informed Consent: Written informed consent has been received from all person’s individuals concerned in this study.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173. https://doi.org/10.1111/2049-632X.12033. (PMID: 10.1111/2049-632X.1203323620179)
Gjodsbol, K., Christensen, J. J., Karlsmark, T., Jørgensen, B., Klein, B. M., & Krogfelt, K. A. (2006). Multiple bacterial species reside in chronic wounds: A longitudinal study. International Wound Journal, 3, 225–31. https://doi.org/10.1111/j.1742-481X.2006.00159.x. (PMID: 10.1111/j.1742-481X.2006.00159.x169845787951738)
CDC. Antibiotic Resistance Threats in the United States. [Accessed on 1 November 2022]. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html.
Bhatt, S., & Chatterjee, S. (2022). Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation–A comprehensive review. Environmental Pollution, 315, 120440. https://doi.org/10.1016/j.envpol.2022.120440. (PMID: 10.1016/j.envpol.2022.12044036265724)
Tamma, P., Aitken, S., Bonomo, R. (2022) IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 2.0. IDSA; Arlington, VA, USA.
Wood, S. J., Kuzel, T. M., & Shafikhani, S. H. (2023). Pseudomonas aeruginosa: Infections, animal modeling, and therapeutics. Cells, 12(1), 199. https://doi.org/10.3390/cells12010199.PMID:36611992;PMCID:PMC9818774. (PMID: 10.3390/cells12010199.PMID:36611992;PMCID:PMC9818774366119929818774)
Zha, G. F., Leng, J., Darshini, N., Shubhavathi, T., Vivek, H. K., Asiri, A. M., & Qin, H. L. (2017). Synthesis, SAR and molecular docking studies of benzo[d]thiazole-hydrazones as potential antibacterial and antifungal agents. Bioorganic & Medicinal Chemistry Letters, 27(20), 3148–55. (PMID: 10.1016/j.bmcl.2017.05.032)
Adu, J. K., Amengor, C. D. K., Ibrahim, N. M., Amaning-Danquah, C., OwusuAnsah, C., Gbadago, D. D., & Sarpong-Agyapong, J. (2020). Synthesis and in vitro antimicrobial and anthelminthic evaluation of naphtholic and phenolic azo dyes. Journal of Tropical Medicine, 2020, 8. (PMID: 10.1155/2020/4850492)
Peters, L., Olson, L., Khu, D. T. K., Linnros, S., Le, N. K., Hanberger, H., Hoang, N. T. B., Tran, D. M., & Larsson, M. (2019). Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE., 14(5), e0215666. https://doi.org/10.1371/journal.pone.0215666. (PMID: 10.1371/journal.pone.0215666310672326505890)
Dadgostar, P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance, 12, 3903–3910. https://doi.org/10.2147/IDR.S234610. (PMID: 10.2147/IDR.S234610319085026929930)
Jansen, W. T. M., Bruggen, J. T., Verhoef, J., & Fluit, A. C. (2006). Bacterial resistance: A sensitive issue: Complexity of the challenge and containment strategy in Europe. Drug Resistance Updates, 9(3), 123–133. https://doi.org/10.1016/j.drup.2006.06.002. (PMID: 10.1016/j.drup.2006.06.002168070667185659)
Ruiz, J. (2003). Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. Journal of Antimicrobial Chemotherapy, 51(5), 1109–1117. https://doi.org/10.1093/jac/dkg222. (PMID: 10.1093/jac/dkg22212697644)
Blondeau, J. M. (2004). Fluoroquinolones: Mechanism of action, classification, and development of resistance. Survey of Ophthalmology, 49(2), S73–S78. https://doi.org/10.1016/j.survophthal.2004.01.005. (PMID: 10.1016/j.survophthal.2004.01.00515028482)
Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clinical Infectious Diseases, 41, S120–S126. https://doi.org/10.1086/428052. (PMID: 10.1086/42805215942878)
Woodford, N., & Ellington, M. J. (2007). The emergence of antibiotic resistance by mutation. Clinical Microbiology & Infection, 13(1), P5-18. https://doi.org/10.1111/j.1469-0691.2006.01492.x. (PMID: 10.1111/j.1469-0691.2006.01492.x)
Chaudhry, U., Ray, K., Bala, M., & Saluja, D. (2002). Mutation patterns in gyrA and parC genes of ciprofloxacin resistant isolates of Neisseria gonorrhoeae from India. Sexually Transmitted Infections, 78, 440–44. (PMID: 10.1136/sti.78.6.440124738061758340)
Mohammed, H. H. H., Abbas, S. H., Abdelhafez, E. S. M. N., Berger, J. M., Mitarai, S., Arai, M., & Abuo-Rahma, G. E. D. A. (2019). Synthesis, molecular docking, antimicrobial evaluation, and DNA cleavage assay of new thiadiazole/oxadiazole ciprofloxacin derivatives. Monatshefte für Chemie—Chemical Monthly, 150, 1809–24. https://doi.org/10.1007/s00706-019-02478-4. (PMID: 10.1007/s00706-019-02478-4)
Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., & Duan, J. (2019). Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infection and Drug Resistance, 12, 261–72. https://doi.org/10.2147/IDR.S182272. (PMID: 10.2147/IDR.S182272308046766371945)
Alsughayer, A., Elassar, A. Z. A., Hasan, A. A., & Sagheer, A. F. (2021). Antibiotic resistance and drug modification: Synthesis, characterization and bioactivity of newly modified potent ciprofloxacin derivatives. Bioorganic Chemistry, 108, 104658. https://doi.org/10.1016/j.bioorg.2021.104658. (PMID: 10.1016/j.bioorg.2021.10465833517003)
Fedorowicz, J., & Saczewski, J. (2019). Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules. Monatshefte fuer Chemie, 149, 1199–1245. https://doi.org/10.1007/s00706-018-2215-x. (PMID: 10.1007/s00706-018-2215-x)
Sharma, P. C., Jain, A., & Jain, S. (2010). Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 577–589. https://doi.org/10.3109/14756360903373350. (PMID: 10.3109/1475636090337335020235755)
Concilio, S., Sessa, L., & Petrone, A. M. (2017). Structure modification of an active azo-compound as a route to new antimicrobial compounds. Molecules, 22, 875. https://doi.org/10.3390/molecules22060875. (PMID: 10.3390/molecules22060875285870766152751)
Ghasemi, Z., Azizi, S., & Salehi, R. (2018). Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. Monatshefte fuer Chemie, 149, 149–157. https://doi.org/10.1007/s00706-017-2073-y. (PMID: 10.1007/s00706-017-2073-y)
de Souza, G. F. P., von Zuben, T. W., & Salles, A. G. J. (2018). A metal-catalyst-free oxidative coupling of anilines to aromatic azo compounds in water using bleach. Tetrahedron Letters, 59(42), 3753–3755. https://doi.org/10.1016/j.tetlet.2018.08.053. (PMID: 10.1016/j.tetlet.2018.08.053)
Moglie, Y., Vitale, C., & Radivoy, G. (2008). Synthesis of azo compounds by nanosized iron-promoted reductive coupling of aromatic nitro compounds. Tetrahedron Letters, 49(11), 1828–1831. https://doi.org/10.1016/j.tetlet.2008.01.053. (PMID: 10.1016/j.tetlet.2008.01.053)
Ude, Z., Flothkötter, N., Sheehan, G., Brennan, M., Kavanagh, K., & Marmion, C. J. (2021). Multi-targeted metallo-ciprofloxacin derivatives rationally designed and developed to overcome antimicrobial resistance. International Journal of Antimicrobial Agents, 58(6), 106449. https://doi.org/10.1016/j.ijantimicag.2021.106449. (PMID: 10.1016/j.ijantimicag.2021.10644934644603)
Miethke, M., Pieroni, M., & Weber, T. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5, 726–749. https://doi.org/10.1038/s41570-021-00313-1. (PMID: 10.1038/s41570-021-00313-1371181828374425)
Kyei, K. S., Akaranta, O., & Darko, G. (2020). Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds. Scientific African, 8, e00406. https://doi.org/10.1016/j.sciaf.2020.e00406. (PMID: 10.1016/j.sciaf.2020.e00406)
Lee, J. J., Lee, W. J., & Choi, J. H. (2005). Synthesis and application of temporarily solubilised azo disperse dyes containing b sulphatoethylsulphonyl group. Dyes and Pigments, 65, 75–81. (PMID: 10.1016/j.dyepig.2004.06.017)
Cockerill, F.R. (2017) Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute. https://clsi.org/standards/products/microbiology/documents/m100/.
El Maghraby, H. M., & Rabie, R. A. (2019). Ciprofloxacin resistance due to gyrA mutation in Pseudomonas aeruginosa isolates at Zagazig University Hospitals. Egyptian Journal of Medical Microbiology, 94(1), 5. https://doi.org/10.21608/ejmm.2018.285598. (PMID: 10.21608/ejmm.2018.285598)
Dumas, J. L., Van, D. C. A., & Perron, K. (2006). Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiology Letters, 254(2), 217–225. https://doi.org/10.1111/j.1574-6968.2005.00008.x. (PMID: 10.1111/j.1574-6968.2005.00008.x16445748)
Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520. (PMID: 10.1093/nar/gkg52012824332168927)
Krieger, E., Joo, K., & Lee, J. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77, 114–122. https://doi.org/10.1002/prot.22570. (PMID: 10.1002/prot.22570197686772922016)
Sada, M., Kimura, H., Nagasawa, N., Akagawa, M., Okayama, K., Shirai, T., Sunagawa, S., Kimura, R., Saraya, T., Ishii, H., Kurai, D., Tsugawa, T., Nishina, A., Tomita, H., Okodo, M., Hirai, S., Ryo, A., Ishioka, T., & Murakami, K. (2022). Molecular evolution of the Pseudomonas aeruginosa DNA Gyrase gyrA Gene. Microorganisms, 10(8), 1660. https://doi.org/10.3390/microorganisms10081660. (PMID: 10.3390/microorganisms10081660360140799415716)
Nastasă, C., Vodnar, D. C., & Ionuţ, I. (2018). Antibacterial Evaluation and virtual screening of new thiazolyl-triazole schiff bases as potential DNA-gyrase inhibitors. International Journal of Molecular Sciences, 19(1), 222. https://doi.org/10.3390/ijms19010222. (PMID: 10.3390/ijms19010222293246795796171)
Hashemi, N.S., Mojiri, M., Yazdani, K.P., Eskandari, S., Mohammadian, M., & Alavi, I., (2017) Prevalence of antibiotic resistance and blaIMP-1 gene among Pseudomonas aeruginosa strains isolated from burn and urinary tract infections in Isfahan, central Iran. Microbiology Research. 8(2), 59–63. https://www.mdpi.com/2036-7481/8/2/7295#.
Nouri, R., Ahangarzadeh, R. M., & Hasani, A. (2016). The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Brazilian Journal of Microbiology, 47(4), 925–930. https://doi.org/10.1016/j.bjm.2016.07.016. (PMID: 10.1016/j.bjm.2016.07.016275229305052375)
Huang, H., Liu, H., & Chuang, H. (2023). Correlation between antibiotic consumption and resistance of Pseudomonas aeruginosa in a teaching hospital implementing an antimicrobial stewardship program: A longitudinal observational study. Journal of Microbiology, Immunology, and Infection, 56(2), 337–343. https://doi.org/10.1016/j.jmii.2022.08.017. (PMID: 10.1016/j.jmii.2022.08.01736210318)
Salma, R., Dabboussi, F., Kassaa, I., Hamze, M., & Khudary, R. (2013). gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. Journal of Infection and Chemotherapy, 19(1), 77–81. https://doi.org/10.1007/s10156-012-0455-y. (PMID: 10.1007/s10156-012-0455-y22821356)
Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa Infections: an update. Drugs, 81(6), 747–760. https://doi.org/10.1007/s40265-021-01635-6. (PMID: 10.1007/s40265-021-01635-6)
Feng, X., Zhang, Z., Li, X., Song, Y., Kang, J., Yin, D., & Duan, J. (2019). Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infection and Drug Resistance, 8(12), 261–72. https://doi.org/10.2147/2FIDR.S182272. (PMID: 10.2147/2FIDR.S182272)
Shams, H. Z., Mohareb, R. M., Helal, M. H., & Mahmoud, A. E. S. (2011). Design and synthesis of novel antimicrobial acyclic and heterocyclic dyes and their precursors for dyeing and/or textile finishing based on 2-N-acylamino-4,5,6,7-tetrahydro-benzo[b]thiophene systems. Molecules, 16(8), 6271–305. https://doi.org/10.3390/molecules16086271. (PMID: 10.3390/molecules16086271217921476264743)
Jarrahpour, A. A., Motamedifar, M., & Pakshir, K. (2004). Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules, 9(10), 815–824. https://doi.org/10.3390/91000815. (PMID: 10.3390/91000815180074816147276)
Di, M. M., Sessa, L., & Di, M. M. (2022). Azobenzene as antimicrobial molecules. Molecules, 27(17), 5643. https://doi.org/10.3390/molecules27175643. (PMID: 10.3390/molecules27175643)
Al-Jumaily, E. F., & Abd, N. Q. (2017). Effect of quinoline-2-one derivatives on the gene expression of mexB of Pseudomonas aeruginosa. Biomedical and Pharmacology Journal. https://doi.org/10.13005/bpj/1255. (PMID: 10.13005/bpj/1255) - Contributed Indexing: Keywords: Ciprofloxacin; Derivative ciprofloxacin; RFLP
- Accession Number: 5E8K9I0O4U (Ciprofloxacin)
EC 5.99.1.3 (DNA Gyrase)
0 (Anti-Bacterial Agents) - Publication Date: Date Created: 20240201 Date Completed: 20250108 Latest Revision: 20250108
- Publication Date: 20250114
- Accession Number: 10.1007/s12033-024-01076-y
- Accession Number: 38302682
- Source:

Copyright © Department of Culture and Tourism, all rights reserved.
Copyright © 2024 Department of Culture and Tourism, all rights reserved. Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
No Comments.