Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Comparison of different trapping methods to collect malaria vectors indoors and outdoors in western Kenya.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101139802 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2875 (Electronic) Linking ISSN: 14752875 NLM ISO Abbreviation: Malar J Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors.
      Methods: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R.
      Results: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC.
      Conclusions: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.
      (© 2024. The Author(s).)
    • References:
      J Infect Dis. 2021 Apr 27;223(12 Suppl 2):S61-S80. (PMID: 33906221)
      Parasit Vectors. 2013 Apr 09;6:91. (PMID: 23570257)
      Malar J. 2013 Apr 30;12:143. (PMID: 23631641)
      Am J Trop Med Hyg. 2002 Jun;66(6):804-11. (PMID: 12224596)
      Parasit Vectors. 2016 Aug 12;9(1):446. (PMID: 27519419)
      J Vector Ecol. 2019 Jun;44(1):149-153. (PMID: 31124234)
      Sci Rep. 2021 Jun 29;11(1):13457. (PMID: 34188090)
      Malar J. 2020 May 7;19(1):174. (PMID: 32381009)
      Am J Trop Med Hyg. 2010 Oct;83(4):848-53. (PMID: 20889878)
      J Med Entomol. 1990 Jul;27(4):570-7. (PMID: 2388233)
      Malar J. 2019 Dec 27;18(1):445. (PMID: 31881898)
      Malar J. 2015 Dec 15;14:502. (PMID: 26670881)
      Malar J. 2020 Nov 11;19(1):408. (PMID: 33176805)
      Sci Rep. 2017 Jan 06;7:40074. (PMID: 28059148)
      Malar J. 2014 Aug 24;13:331. (PMID: 25150840)
      Malar J. 2019 Mar 18;18(1):83. (PMID: 30885205)
      Med Vet Entomol. 2018 Sep;32(3):263-270. (PMID: 29479733)
      Malar J. 2023 Nov 30;22(1):366. (PMID: 38037026)
      Sci Rep. 2021 Sep 2;11(1):17569. (PMID: 34475470)
      Malar J. 2017 Jan 13;16(1):30. (PMID: 28086776)
      Parasit Vectors. 2021 Jun 12;14(1):320. (PMID: 34118973)
      J Parasitol Res. 2020 Jan 25;2020:3560310. (PMID: 32411419)
      Malar J. 2015 Jun 17;14:244. (PMID: 26082138)
      Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15086-15095. (PMID: 31285346)
      Sci Rep. 2020 Mar 11;10(1):4518. (PMID: 32161302)
      Parasit Vectors. 2022 Jul 8;15(1):246. (PMID: 35804461)
      Parasit Vectors. 2015 Dec 15;8:636. (PMID: 26666683)
      Malar J. 2020 Feb 13;19(1):70. (PMID: 32054502)
      Med Vet Entomol. 1995 Jul;9(3):249-55. (PMID: 7548941)
      Parasit Vectors. 2018 Aug 13;11(1):464. (PMID: 30103825)
      Malar J. 2019 Dec 4;18(1):399. (PMID: 31801543)
      Bull Entomol Res. 2000 Jun;90(3):211-9. (PMID: 10996862)
      J Med Entomol. 2007 Jan;44(1):14-22. (PMID: 17294916)
      Malar J. 2020 Feb 14;19(1):72. (PMID: 32059671)
      Bull World Health Organ. 1987;65(1):39-45. (PMID: 3555879)
      J Am Mosq Control Assoc. 1998 Jun;14(2):186-95. (PMID: 9673921)
      Malar J. 2014 Mar 28;13:125. (PMID: 24678587)
      Malar J. 2011 Jul 07;10:184. (PMID: 21736750)
      Exp Parasitol. 1996 Apr;82(3):306-15. (PMID: 8631382)
      Parasit Vectors. 2013 Apr 20;6:114. (PMID: 23601146)
      Am J Trop Med Hyg. 2003 Apr;68(4 Suppl):16-22. (PMID: 12749481)
      Am J Trop Med Hyg. 1993 Oct;49(4):520-9. (PMID: 8214283)
      J Am Mosq Control Assoc. 2012 Sep;28(3):184-91. (PMID: 23833898)
      Malar J. 2010 Feb 26;9:62. (PMID: 20187956)
      Am J Trop Med Hyg. 2003 Apr;68(4 Suppl):115-20. (PMID: 12749494)
      Sci Rep. 2022 Nov 29;12(1):20596. (PMID: 36446923)
      Trans R Soc Trop Med Hyg. 1996 Jan-Feb;90(1):23-5. (PMID: 8730303)
      Parasit Vectors. 2018 Oct 15;11(1):533. (PMID: 30318015)
      Parasit Vectors. 2014 Aug 20;7:380. (PMID: 25141761)
      Malar J. 2015 Jun 25;14:259. (PMID: 26109384)
      PLoS One. 2012;7(3):e31481. (PMID: 22438864)
      Malar J. 2024 Mar 4;23(1):66. (PMID: 38438933)
      Malar J. 2014 Mar 21;13:111. (PMID: 24656206)
      Am J Trop Med Hyg. 2014 Apr;90(4):597-604. (PMID: 24470562)
      PLoS One. 2020 Feb 25;15(2):e0224718. (PMID: 32097407)
      Malar J. 2020 Oct 28;19(1):383. (PMID: 33115495)
      Tanzan Health Res Bull. 2005 Sep;7(3):117-24. (PMID: 16941936)
      Malar J. 2020 Nov 25;19(1):432. (PMID: 33239015)
      Malar J. 2015 Jun 18;14:247. (PMID: 26082036)
      Parasit Vectors. 2020 Jun 10;13(1):295. (PMID: 32522290)
      J Vector Ecol. 2018 Jun;43(1):201-204. (PMID: 29757509)
      Mem Inst Oswaldo Cruz. 2014 Aug;109(5):685-705. (PMID: 25185008)
    • Grant Information:
      INV-007509 United States GATES Bill & Melinda Gates Foundation; INV-007509 United States GATES Bill & Melinda Gates Foundation; INV-007509 United States GATES Bill & Melinda Gates Foundation
    • Contributed Indexing:
      Keywords: Anopheles; Human landing catches; Trapping methods; UV light trap
    • Publication Date:
      Date Created: 20240317 Date Completed: 20240318 Latest Revision: 20240319
    • Publication Date:
      20240319
    • Accession Number:
      PMC10943837
    • Accession Number:
      10.1186/s12936-024-04907-0
    • Accession Number:
      38493098