Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A machine learning-based predictive model of causality in orthopaedic medical malpractice cases in China.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Competing Interests: The authors have declared that no competing interests exist.
      Purpose: To explore the feasibility and validity of machine learning models in determining causality in medical malpractice cases and to try to increase the scientificity and reliability of identification opinions.
      Methods: We collected 13,245 written judgments from PKULAW.COM, a public database. 963 cases were included after the initial screening. 21 medical and ten patient factors were selected as characteristic variables by summarising previous literature and cases. Random Forest, eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) were used to establish prediction models of causality for the two data sets, respectively. Finally, the optimal model is obtained by hyperparameter tuning of the six models.
      Results: We built three real data set models and three virtual data set models by three algorithms, and their confusion matrices differed. XGBoost performed best in the real data set, with a model accuracy of 66%. In the virtual data set, the performance of XGBoost and LightGBM was basically the same, and the model accuracy rate was 80%. The overall accuracy of external verification was 72.7%.
      Conclusions: The optimal model of this study is expected to predict the causality accurately.
      (Copyright: © 2024 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Nat Commun. 2023 Aug 19;14(1):5058. (PMID: 37598215)
      J Mach Learn Res. 2019;20:. (PMID: 34335110)
      Forensic Sci Med Pathol. 2020 Jun;16(2):313-320. (PMID: 32157581)
      Front Public Health. 2023 Jan 05;10:1095001. (PMID: 36684935)
      Arthroplasty. 2022 Oct 1;4(1):37. (PMID: 36180903)
      Unfallchirurg. 2020 Jan;123(1):6-15. (PMID: 31690984)
      Jt Dis Relat Surg. 2020;31(2):175-183. (PMID: 32584712)
      IEEE Trans Med Imaging. 2021 Mar;40(3):905-915. (PMID: 33259294)
      Int J Environ Res Public Health. 2020 Nov 11;17(22):. (PMID: 33187384)
      Healthcare (Basel). 2023 Jul 08;11(14):. (PMID: 37510420)
      Med Sci Law. 2023 Jul;63(3):237-242. (PMID: 36748657)
      Am J Prev Med. 2023 Oct;65(4):579-586. (PMID: 37087076)
      Sci Justice. 2021 Jan;61(1):37-46. (PMID: 33357826)
      Healthcare (Basel). 2022 May 12;10(5):. (PMID: 35628029)
      Appl Ergon. 2022 Nov;105:103860. (PMID: 35963213)
      OTA Int. 2022 Jun 28;5(3):e199. (PMID: 36425091)
      Nat Med. 2023 Jul;29(7):1804-1813. (PMID: 37386246)
      Science. 2020 Jun 26;368(6498):1433-1434. (PMID: 32587011)
      Sci Justice. 2020 May;60(3):216-224. (PMID: 32381238)
      Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55. (PMID: 34518686)
      Circulation. 2015 Nov 17;132(20):1920-30. (PMID: 26572668)
      Sci Rep. 2022 Jul 9;12(1):11703. (PMID: 35810213)
      PLoS Comput Biol. 2007 Jun;3(6):e116. (PMID: 17604446)
      J Forensic Leg Med. 2018 Jul;57:41-50. (PMID: 29801951)
      BMC Med. 2015 Jan 06;13:1. (PMID: 25563062)
      J Forensic Sci. 2019 Sep;64(5):1379-1388. (PMID: 30791101)
      Healthcare (Basel). 2021 Nov 12;9(11):. (PMID: 34828590)
      J Forensic Leg Med. 2019 Feb;62:40-43. (PMID: 30639854)
      Int J Legal Med. 2023 Mar;137(2):445-458. (PMID: 36507961)
      J Family Med Prim Care. 2021 Oct;10(10):3535-3539. (PMID: 34934642)
      Z Gastroenterol. 2014 Sep;52(9):1050-61. (PMID: 25198084)
      BMJ Open. 2020 Sep 24;10(9):e034681. (PMID: 32973050)
      PLoS One. 2021 May 12;16(5):e0248052. (PMID: 33979345)
      Musculoskelet Sci Pract. 2019 Feb;39:164-169. (PMID: 30502096)
      Int J Legal Med. 2014 Nov;128(6):1049-57. (PMID: 24676889)
      Nat Comput Sci. 2023 Jul;3(7):621-629. (PMID: 37600116)
      Nat Commun. 2024 Jan 13;15(1):506. (PMID: 38218885)
      Fa Yi Xue Za Zhi. 2022 Apr 25;38(2):150-157. (PMID: 35899498)
      BMC Health Serv Res. 2014 Sep 13;14:390. (PMID: 25218509)
      J Forensic Sci. 2019 Nov;64(6):1693-1697. (PMID: 31237698)
      Int J Legal Med. 2013 May;127(3):545-57. (PMID: 23564275)
      JMIR Med Inform. 2022 Nov 3;10(11):e35709. (PMID: 36326815)
      Front Psychiatry. 2019 Feb 13;10:18. (PMID: 30814957)
      Fa Yi Xue Za Zhi. 2022 Apr 25;38(2):173-181. (PMID: 35899501)
      Eur Radiol. 2019 May;29(5):2322-2329. (PMID: 30402703)
      Forensic Sci Int. 2023 Aug;349:111761. (PMID: 37327724)
      Int J Legal Med. 2021 May;135(3):1047-1054. (PMID: 32783158)
      Phys Med Rehabil Clin N Am. 2002 May;13(2):371-408, x. (PMID: 12122852)
    • Publication Date:
      Date Created: 20240417 Date Completed: 20240419 Latest Revision: 20240419
    • Publication Date:
      20250114
    • Accession Number:
      PMC11023448
    • Accession Number:
      10.1371/journal.pone.0300662
    • Accession Number:
      38630758