Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Host influence on the eukaryotic virome of sympatric mosquitoes and abundance of diverse viruses with a broad host range.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Mosquitoes harbor a large diversity of eukaryotic viruses. Those viromes probably influence mosquito physiology and the transmission of human pathogens. Nevertheless, their ecology remains largely unstudied. Here, we address two key questions in virome ecology. First, we assessed the influence of mosquito species on virome taxonomic diversity and relative abundance. Contrary to most previous studies, the potential effect of the habitat was explicitly included. Thousands of individuals of Culex poicilipes and Culex tritaeniorhynchus, two vectors of viral diseases, were concomitantly sampled in three habitats over two years. A total of 95 viral taxa from 25 families were identified with meta-transcriptomics, with 75% of taxa shared by both mosquitoes. Viromes significantly differed by mosquito species but not by habitat. Differences were largely due to changes in relative abundance of shared taxa. Then, we studied the diversity of viruses with a broad host range. We searched for viral taxa shared by the two Culex species and Aedes vexans, another disease vector, present in one of the habitats. Twenty-six out of the 163 viral taxa were found in the three mosquitoes. These taxa encompassed 14 families. A database analysis supported broad host ranges for many of those viruses, as well as a widespread geographical distribution. Thus, the viromes of mosquitoes from the same genera mainly differed in the relative abundance of shared taxa, whereas differences in viral diversity dominated between mosquito genera. Whether this new model of virome diversity and structure applies to other mosquito communities remains to be determined.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Morel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Parasit Vectors. 2016 Jul 25;9(1):414. (PMID: 27457250)
      mSystems. 2020 Sep 29;5(5):. (PMID: 32994288)
      Ecology. 2015 Oct;96(10):2613-21. (PMID: 26649383)
      J Virol. 2019 Aug 28;93(18):. (PMID: 31243123)
      J Comput Graph Stat. 2018;27(4):910-922. (PMID: 30911216)
      Nat Microbiol. 2023 Jan;8(1):135-149. (PMID: 36604511)
      Trop Med Infect Dis. 2022 Aug 23;7(9):. (PMID: 36136615)
      Virus Evol. 2022 Feb 02;8(1):veac006. (PMID: 35242359)
      Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
      Trends Microbiol. 2022 Nov;30(11):1025-1035. (PMID: 35644779)
      Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
      Viruses. 2020 Feb 28;12(3):. (PMID: 32121094)
      PLoS One. 2022 Jul 27;17(7):e0263143. (PMID: 35895627)
      Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8. (PMID: 24293649)
      Bioinformatics. 2015 May 15;31(10):1674-6. (PMID: 25609793)
      Parasit Vectors. 2018 Jan 9;11(1):27. (PMID: 29316967)
      PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
      Sci Rep. 2021 Apr 19;11(1):8448. (PMID: 33875673)
      PLoS Negl Trop Dis. 2021 Apr 26;15(4):e0009381. (PMID: 33901182)
      Front Cell Infect Microbiol. 2021 Aug 30;11:694020. (PMID: 34527601)
      One Health. 2023 Jan 20;16:100490. (PMID: 36817977)
      Virus Evol. 2022 Apr 16;8(1):veac036. (PMID: 35505691)
      Infect Genet Evol. 2018 Jul;61:151-154. (PMID: 29592838)
      mBio. 2022 Oct 26;13(5):e0102122. (PMID: 36069449)
      PLoS Comput Biol. 2014 Apr 24;10(4):e1003594. (PMID: 24763141)
      Nat Commun. 2015 Sep 22;6:8147. (PMID: 26391192)
      Curr Opin Virol. 2021 Aug;49:7-12. (PMID: 33991759)
      Evol Bioinform Online. 2017 Jan 10;12(Suppl 2):35-44. (PMID: 28096646)
      Viruses. 2019 Nov 06;11(11):. (PMID: 31698792)
      Genome Res. 1999 Sep;9(9):868-77. (PMID: 10508846)
      J Clin Microbiol. 2011 Sep;49(9):3268-75. (PMID: 21715589)
      J Virol. 2017 Aug 10;91(17):. (PMID: 28637756)
      Viruses. 2015 Sep 10;7(9):4911-28. (PMID: 26378568)
      Mol Ecol Resour. 2021 Aug;21(6):1788-1807. (PMID: 33713395)
      Nat Microbiol. 2019 Sep;4(9):1508-1515. (PMID: 31182801)
      Virus Evol. 2023 Aug 24;9(2):vead054. (PMID: 37719779)
      Microbiome. 2019 Aug 28;7(1):121. (PMID: 31462331)
      Virology. 2015 May;479-480:2-25. (PMID: 25771806)
      One Health. 2023 Feb 01;16:100493. (PMID: 36817976)
      Viruses. 2018 Jan 12;10(1):. (PMID: 29329230)
      Nat Microbiol. 2016 Jan 11;1:15015. (PMID: 27571759)
    • Publication Date:
      Date Created: 20240430 Date Completed: 20240430 Latest Revision: 20240502
    • Publication Date:
      20240502
    • Accession Number:
      PMC11060559
    • Accession Number:
      10.1371/journal.pone.0300915
    • Accession Number:
      38687731