Item request has been placed!
×
Item request cannot be made.
×

Exposure to Selenomethionine and Selenocystine Induces Redox-Mediated ER Stress in Normal Breast Epithelial MCF-10A Cells.
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Dauplais M;Dauplais M; Romero S; Romero S; Lazard M; Lazard M
- Source:
Biological trace element research [Biol Trace Elem Res] 2025 Mar; Vol. 203 (3), pp. 1453-1464. Date of Electronic Publication: 2024 May 22.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Humana Press Country of Publication: United States NLM ID: 7911509 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0720 (Electronic) Linking ISSN: 01634984 NLM ISO Abbreviation: Biol Trace Elem Res Subsets: MEDLINE
- Publication Information: Original Publication: [London, Clifton, N. J.] Humana Press.
- Subject Terms: Selenomethionine*/pharmacology ; Endoplasmic Reticulum Stress*/drug effects ; Cystine*/analogs & derivatives ; Cystine*/pharmacology ; Organoselenium Compounds*/pharmacology ; Epithelial Cells*/metabolism ; Epithelial Cells*/drug effects ; Breast*/cytology ; Breast*/metabolism ; Breast*/drug effects; Humans ; Endoplasmic Reticulum Chaperone BiP ; Oxidation-Reduction/drug effects ; Female ; Apoptosis/drug effects ; Selenocysteine/pharmacology ; Cell Proliferation/drug effects ; MCF-7 Cells ; HeLa Cells
- Abstract: Competing Interests: Declarations. Ethics Approval and Consent to Participate: Not applicable. Competing Interests: The authors declare no competing interests.
Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120. https://doi.org/10.1016/j.tibs.2013.12.007. (PMID: 10.1016/j.tibs.2013.12.007244850583943681)
Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777. https://doi.org/10.1152/physrev.00039.2013. (PMID: 10.1152/physrev.00039.2013249870044101630)
Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760. https://doi.org/10.1056/NEJMcibr1402199. (PMID: 10.1056/NEJMcibr140219924785212)
Shimada BK, Alfulaij N, Seale LA (2021) The Impact of Selenium Deficiency on Cardiovascular Function. Int J Mol Sci 22(19). https://doi.org/10.3390/ijms221910713.
Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64(4):527–542. (PMID: 10.1079/PNS200546716313696)
Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V (2017) Selenium nanoparticles as a nutritional supplement. Nutrition 33:83–90. https://doi.org/10.1016/j.nut.2016.05.001. (PMID: 10.1016/j.nut.2016.05.00127356860)
Kieliszek M, Serrano Sandoval SN (2023) The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 79:127260. https://doi.org/10.1016/j.jtemb.2023.127260. (PMID: 10.1016/j.jtemb.2023.12726037421809)
Vinceti M, Filippini T, Del Giovane C et al (2018) Selenium for preventing cancer. Cochrane Database Syst Rev (1). https://doi.org/10.1002/14651858.CD005195.pub4.
Rayman MP, Winther KH, Pastor-Barriuso R et al (2018) Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 127:46–54. https://doi.org/10.1016/j.freeradbiomed.2018.02.015. (PMID: 10.1016/j.freeradbiomed.2018.02.01529454039)
Vinceti M, Filippini T, Wise LA (2018) Environmental Selenium and Human Health: an Update. Curr Environ Health Rep 5(4):464–485. https://doi.org/10.1007/s40572-018-0213-0. (PMID: 10.1007/s40572-018-0213-030280317)
Rayman MP (2020) Selenium intake, status, and health: a complex relationship. Hormones (Athens) 19(1):9–14. https://doi.org/10.1007/s42000-019-00125-5. (PMID: 10.1007/s42000-019-00125-531388899)
Spallholz JE (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 10(2–3):260–270. (PMID: 9315319)
Seko Y, Imura N (1997) Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10(2–3):333–339. (PMID: 9315327)
Drake EN (2006) Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Med Hypotheses 67(2):318–322. https://doi.org/10.1016/j.mehy.2006.01.058. (PMID: 10.1016/j.mehy.2006.01.05816574336)
Tarze A, Dauplais M, Grigoras I et al (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem 282(12):8759–8767. https://doi.org/10.1074/jbc.M610078200. (PMID: 10.1074/jbc.M61007820017261587)
Kumar S, Björnstedt M, Holmgren A (1992) Selenite is a substrate for calf thymus thioredoxin reductase and thioredoxin and elicits a large non-stoichiometric oxidation of NADPH in the presence of oxygen. Eur J Biochem 207(2):435–439. (PMID: 10.1111/j.1432-1033.1992.tb17068.x1321713)
Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M (2015) Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients 7(5):3536–3556. https://doi.org/10.3390/nu7053536. (PMID: 10.3390/nu7053536259847424446766)
Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850(8):1642–1660. https://doi.org/10.1016/j.bbagen.2014.10.008. (PMID: 10.1016/j.bbagen.2014.10.00825459512)
Hondal RJ, Marino SM, Gladyshev VN (2013) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 18(13):1675–1689. https://doi.org/10.1089/ars.2012.5013. (PMID: 10.1089/ars.2012.5013231216223613276)
Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I (2020) Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants (Basel). 9(1). https://doi.org/10.3390/antiox9010080.
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y (2020) Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants 9(5):420. (PMID: 10.3390/antiox9050420324140917278812)
Dauplais M, Bierla K, Maizeray C et al (2021) Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces cerevisiae. Int J Mol Sci 22(5):2241. https://doi.org/10.3390/ijms22052241. (PMID: 10.3390/ijms22052241336681247956261)
Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112. (PMID: 10.1016/S1043-4526(03)47002-214639782)
Lazard M, Dauplais M, Blanquet S, Plateau P (2017) Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 8(2):93–104. https://doi.org/10.1515/bmc-2017-0007. (PMID: 10.1515/bmc-2017-000728574376)
Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H (2011) Rapamycin suppresses ROS-dependent apoptosis caused by selenomethionine in A549 lung carcinoma cells. Cancer Chemother Pharmacol 67(5):1129–1136. https://doi.org/10.1007/s00280-010-1417-7. (PMID: 10.1007/s00280-010-1417-720680277)
Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H (2010) Differential apoptotic response of human cancer cells to organoselenium compounds. Cancer Chemother Pharmacol 66(3):475–484. https://doi.org/10.1007/s00280-009-1183-6. (PMID: 10.1007/s00280-009-1183-619940991)
Korbut E, Ptak-Belowska A, Brzozowski T (2018) Inhibitory effect of selenomethionine on carcinogenesis in the model of human colorectal cancer in vitro and its link to the Wnt/β-catenin pathway. Acta Biochim Pol 65(3):359–366. https://doi.org/10.18388/abp.2018_2628. (PMID: 10.18388/abp.2018_262830016378)
Zhang B, Wei X, Li J (2023) Selenomethionine suppresses head and neck squamous cell carcinoma progression through TopBP1/ATR and TCAB1 signaling. Histol Histopathol 18665. https://doi.org/10.14670/hh-18-665.
Ouerdane L, Mester Z (2008) Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae. J Agric Food Chem 56(24):11792–11799. https://doi.org/10.1021/jf8018479. (PMID: 10.1021/jf801847919035646)
Kajander EO, Harvima RJ, Eloranta TO et al (1991) Metabolism, cellular actions, and cytotoxicity of selenomethionine in cultured cells. Biol Trace Elem Res 28(1):57–68. (PMID: 10.1007/BF029904631711890)
Lazard M, Dauplais M, Blanquet S, Plateau P (2015) Trans-sulfuration pathway seleno-amino acids are mediators of selenomethionine toxicity in Saccharomyces cerevisiae. J Biol Chem 290(17):10741–10750. https://doi.org/10.1074/jbc.M115.640375. (PMID: 10.1074/jbc.M115.640375257451084409240)
Plateau P, Saveanu C, Lestini R et al (2017) Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep 7:44761. https://doi.org/10.1038/srep44761. (PMID: 10.1038/srep44761283039475355996)
Hoseki J, Oishi A, Fujimura T, Sakai Y (2016) Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER. Biosci Rep 36(2). https://doi.org/10.1042/bsr20160027.
Wallenberg M, Misra S, Björnstedt M (2014) Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol 114(5):377–386. https://doi.org/10.1111/bcpt.12207. (PMID: 10.1111/bcpt.1220724529300)
Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radical Biol Med 127:80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001. (PMID: 10.1016/j.freeradbiomed.2018.05.001)
Suzuki T, Takahashi J, Yamamoto M (2023) Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells 46(3):133–141. https://doi.org/10.14348/molcells.2023.0028. (PMID: 10.14348/molcells.2023.00283699447310070164)
Zou Y, Shi H, Liu N, Wang H, Song X, Liu B (2023) Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 10:1195464. https://doi.org/10.3389/fcvm.2023.1195464. (PMID: 10.3389/fcvm.2023.11954643725211910219228)
Kim TS, Yun BY, Kim IY (2003) Induction of the mitochondrial permeability transition by selenium compounds mediated by oxidation of the protein thiol groups and generation of the superoxide. Biochem Pharmacol 66(12):2301–2311. (PMID: 10.1016/j.bcp.2003.08.02114637188)
Cvetko F, Caldwell ST, Higgins M et al (2021) Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem 296:100169. https://doi.org/10.1074/jbc.RA120.016551. (PMID: 10.1074/jbc.RA120.01655133298526)
Redman C, Scott JA, Baines AT et al (1998) Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett 125(1–2):103–110. (PMID: 10.1016/S0304-3835(97)00497-79566703)
Chen T, Wong YS (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 63(2):105–113. https://doi.org/10.1016/j.biopha.2008.03.009. (PMID: 10.1016/j.biopha.2008.03.00918511231)
da Costa NS, Lima LS, Oliveira FAM et al (2023) Antiproliferative Effect of Inorganic and Organic Selenium Compounds in Breast Cell Lines. Biomedicines 11(5). https://doi.org/10.3390/biomedicines11051346.
Ibáñez E, Plano D, Font M et al (2011) Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates. Eur J Med Chem 46(1):265–274. https://doi.org/10.1016/j.ejmech.2010.11.013. (PMID: 10.1016/j.ejmech.2010.11.01321115210)
DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200. https://doi.org/10.1126/sciadv.1600200. (PMID: 10.1126/sciadv.1600200273865464928883)
Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074. https://doi.org/10.1155/2010/214074. (PMID: 10.1155/2010/214074201825292825543)
de Thonel A, Le Mouël A, Mezger V (2012) Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 44(10):1593–1612. https://doi.org/10.1016/j.biocel.2012.06.012. (PMID: 10.1016/j.biocel.2012.06.01222750029)
Poerschke RL, Franklin MR, Moos PJ (2008) Modulation of redox status in human lung cell lines by organoselenocompounds: selenazolidines, selenomethionine, and methylseleninic acid. Toxicol Vitro 22(7):1761–1767. https://doi.org/10.1016/j.tiv.2008.08.003. (PMID: 10.1016/j.tiv.2008.08.003)
Rahmanto AS, Davies MJ (2012) Selenium-containing amino acids as direct and indirect antioxidants. IUBMB Life 64(11):863–871. https://doi.org/10.1002/iub.1084. (PMID: 10.1002/iub.108423086812)
Chen T, Wong YS (2008) Selenocystine induces S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells by modulating ERK and Akt phosphorylation. J Agric Food Chem 56(22):10574–10581. https://doi.org/10.1021/jf802125t. (PMID: 10.1021/jf802125t18959417)
Chen T, Wong YS (2009) Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. Int J Biochem Cell Biol 41(3):666–676. https://doi.org/10.1016/j.biocel.2008.07.014. (PMID: 10.1016/j.biocel.2008.07.01418718551)
Wahyuni EA, Yii CY, Liang HL et al (2022) Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chem Biol Interact 365:110046. https://doi.org/10.1016/j.cbi.2022.110046. (PMID: 10.1016/j.cbi.2022.11004635863474)
Hu H, Tian M, Ding C, Yu S (2018) The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083. (PMID: 10.3389/fimmu.2018.0308330662442)
Wu Y, Zhang H, Dong Y, Park YM, Ip C (2005) Endoplasmic reticulum stress signal mediators are targets of selenium action. Cancer Res 65(19):9073–9079. https://doi.org/10.1158/0008-5472.Can-05-2016. (PMID: 10.1158/0008-5472.Can-05-201616204082)
Zu K, Bihani T, Lin A, Park YM, Mori K, Ip C (2006) Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells. Oncogene 25(4):546–554. https://doi.org/10.1038/sj.onc.1209071. (PMID: 10.1038/sj.onc.1209071162056452424019)
Shigemi Z, Manabe K, Hara N et al (2017) Methylseleninic acid and sodium selenite induce severe ER stress and subsequent apoptosis through UPR activation in PEL cells. Chem Biol Interact 266:28–37. https://doi.org/10.1016/j.cbi.2017.01.027. (PMID: 10.1016/j.cbi.2017.01.02728161410)
Goltyaev MV, Mal’tseva VN, Varlamova EG (2020) Expression of ER-resident selenoproteins and activation of cancer cells apoptosis mechanisms under ER-stress conditions caused by methylseleninic acid. Gene 755:144884. https://doi.org/10.1016/j.gene.2020.144884. (PMID: 10.1016/j.gene.2020.14488432562739)
Zachariah M, Maamoun H, Milano L, Rayman MP, Meira LB, Agouni A (2021) Endoplasmic reticulum stress and oxidative stress drive endothelial dysfunction induced by high selenium. J Cell Physiol 236(6):4348–4359. https://doi.org/10.1002/jcp.30175. (PMID: 10.1002/jcp.3017533241572)
Wallenberg M, Misra S, Wasik AM et al (2014) Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med 18(4):671–684. https://doi.org/10.1111/jcmm.12214. (PMID: 10.1111/jcmm.12214244008444000118)
Wang L, Wang CC (2023) Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem Sci 48(1):40–52. https://doi.org/10.1016/j.tibs.2022.06.011. (PMID: 10.1016/j.tibs.2022.06.01135871147)
Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C (2014) Redox controls UPR to control redox. J Cell Sci 127(Pt 17):3649–3658. https://doi.org/10.1242/jcs.153643. (PMID: 10.1242/jcs.15364325107370)
Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K (2001) Contribution of enzymic alpha, gamma-elimination reaction in detoxification pathway of selenomethionine in mouse liver. Toxicol Appl Pharmacol 176(1):18–23. https://doi.org/10.1006/taap.2001.9260. (PMID: 10.1006/taap.2001.926011578145)
Palace VP, Spallholz JE, Holm J, Wautier K, Evans RE, Baron CL (2004) Metabolism of selenomethionine by rainbow trout (Oncorhynchus mykiss) embryos can generate oxidative stress. Ecotoxicol Environ Saf 58(1):17–21. https://doi.org/10.1016/j.ecoenv.2003.08.019. (PMID: 10.1016/j.ecoenv.2003.08.01915087158)
Suzuki KT, Kurasaki K, Suzuki N (2007) Selenocysteine beta-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochim Biophys Acta 1770(7):1053–1061. https://doi.org/10.1016/j.bbagen.2007.03.007. (PMID: 10.1016/j.bbagen.2007.03.00717451884)
Gabel-Jensen C, Odgaard J, Skonberg C, Badolo L, Gammelgaard B (2009) LC-ICP-MS and LC-ESI-(MS)n identification of Se-methylselenocysteine and selenomethionine as metabolites of methylseleninic acid in rat hepatocytes. J Anal At Spectrom 24(1):69–75. https://doi.org/10.1039/B807805J. (PMID: 10.1039/B807805J)
Dauplais M, Mahou P, Plateau P, Lazard M (2021) Exposure to the Methylselenol Precursor Dimethyldiselenide Induces a Reductive Endoplasmic Reticulum Stress in Saccharomyces cerevisiae. Int J Mol Sci 22(11):5467. (PMID: 10.3390/ijms22115467340673048196827) - Contributed Indexing: Keywords: ER stress; MCF-10A; Oxidative stress; Redox; Selenocystine; Selenomethionine
- Accession Number: 964MRK2PEL (Selenomethionine)
0 (Endoplasmic Reticulum Chaperone BiP)
1464-43-3 (selenocystine)
48TCX9A1VT (Cystine)
0 (HSPA5 protein, human)
0 (Organoselenium Compounds)
0CH9049VIS (Selenocysteine) - Publication Date: Date Created: 20240522 Date Completed: 20250422 Latest Revision: 20250422
- Publication Date: 20250423
- Accession Number: 10.1007/s12011-024-04244-y
- Accession Number: 38777874
- Source:

Copyright © Department of Culture and Tourism, all rights reserved.
Copyright © 2024 Department of Culture and Tourism, all rights reserved. Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
No Comments.