Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Effect of exercise duration on toluene-induced locomotor sensitization in mice: a focus on the Renin Angiotensin System.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7608025 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-2072 (Electronic) Linking ISSN: 00333158 NLM ISO Abbreviation: Psychopharmacology (Berl) Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin, New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Rationale: Exercise attenuates addictive behavior; however, little is known about the contribution of exercise duration to this positive effect. The Renin Angiotensin System (RAS) has been implicated both in addictive responses and in the beneficial effects of exercise; though, its role in the advantageous effects of exercise on toluene-induced addictive responses has not been explored.
      Objectives: To evaluate the impact of different exercise regimens in mitigating the expression of toluene-induced locomotor sensitization and to analyze changes in RAS elements' expression at the mesocorticolimbic system after repeated toluene exposure and following voluntary wheel running in toluene-sensitized animals.
      Methods: Toluene-induced addictive-like response was evaluated with a locomotor sensitization model in mice. Toluene-sensitized animals had access to running wheels 1, 2, 4 or 24 h/day for 4 weeks; thereafter, locomotor sensitization expression was evaluated after a toluene challenge. RAS elements (ACE and ACE2 enzymes; AT1, AT2 and Mas receptors) expression was determined by Western blot in the VTA, NAc and PFCx of toluene-sensitized mice with and without exercise.
      Results: Individual differences in toluene-induced locomotor sensitization development were observed. Access to wheel running 1 and 2 h/day reduced but 4 and 24 h/day completely blocked locomotor sensitization expression. Repeated toluene exposure changed RAS elements' expression in the VTA, NAc and PFCx, while exercise mainly modified ACE and AT1 in air-exposed and toluene-sensitized mice.
      Conclusions: Inhalant-exposed animals show different sensitization phenotypes. Exercise duration determined its efficacy to attenuate the addictive-like response. Toluene exposure and exercise each modified RAS, the latter also modifying toluene-induced changes.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Abrahao KP, Goeldner FO, Souza-Formigoni ML (2014) Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens. PLoS One 9(2):e98296. https://doi.org/10.1371/journal.pone.0098296. (PMID: 10.1371/journal.pone.0098296249190544053371)
      Agarwal D, Welsch MA, Keller JN, Francis J (2011) Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol 106(6):1069–1085. https://doi.org/10.1007/s00395-011-0231-7. (PMID: 10.1007/s00395-011-0231-7221247563261080)
      Batis JC, Hannigan JH, Bowen SE (2010) Differential effects of inhaled toluene on locomotor activity in adolescent and adult rats. Pharmacol Biochem Behav 96(4):438–448. https://doi.org/10.1016/j.pbb.2010.07.003. (PMID: 10.1016/j.pbb.2010.07.003206244182935171)
      Berridge KC, Robinson TE (2016) Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol 71(8):670–679. https://doi.org/10.1037/amp0000059. (PMID: 10.1037/amp0000059279772395171207)
      Bowen SE, Kimar S, Irtenkauf S (2010) Comparison of toluene-induced locomotor activity in four mouse strains. Pharmacol Biochem Behav 95(2):249–257. https://doi.org/10.1016/j.pbb.2010.01.014. (PMID: 10.1016/j.pbb.2010.01.014201389052852257)
      Bowen SE, Charlesworth JD, Tokarz ME. Wright MJ, Wiley JL (2007) Decreased sensitivity in adolescent vs. adult rats to the locomotor activating effects of toluene. Neurotoxicol Teratol 29(6):599-606. https://doi.org/10.1016/j.ntt.2007.08.001.
      Braunscheidel KM, Wayman WN, Okas MP, Woodward JJ (2020) Self-Administration of Toluene Vapor in Rats. Front Neurosci 14:880. https://doi.org/10.3389/fnins.2020.00880. (PMID: 10.3389/fnins.2020.00880329734347461949)
      Brown DC, Steward LJ, Ge J, Barnes NM (1996) Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol 118(2):414–420. https://doi.org/10.1111/j.1476-5381.1996.tb15418.x. (PMID: 10.1111/j.1476-5381.1996.tb15418.x87356461909619)
      Centanni SW, Conley SY, Luchsinger JR, Lantier L, Winder DG (2022) The impact of intermittent exercise on mouse ethanol drinking and abstinence-associated affective behavior and physiology. Alcohol Clin Exp Res 46(1):114–128. https://doi.org/10.1111/acer.14742. (PMID: 10.1111/acer.1474234773282)
      Chaar LJ, Alves TP, Batista Junior AM, Michelini LC (2015) Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas-The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS One 10(9):e0137395. https://doi.org/10.1371/journal.pone.0137395. (PMID: 10.1371/journal.pone.0137395263721084570767)
      Chai SY, Mendelsohn FA, Paxinos G (1987) Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography. Neuroscience 20(2):615–627. https://doi.org/10.1016/0306-4522(87)90114-x. (PMID: 10.1016/0306-4522(87)90114-x3035425)
      Chang YS, Lin CL, Lee CW, Lin HC, Wu YT, Shih YH (2022) Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int J Mol Sci 23(10). https://doi.org/10.3390/ijms23105531.
      Cosgrove KP, Hunter RG, Carroll ME (2002) Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences. Pharmacol Biochem Behav 73(3):663–671. https://doi.org/10.1016/s0091-3057(02)00853-5. (PMID: 10.1016/s0091-3057(02)00853-512151042)
      Cruz SL, Bowen SE (2021) The last two decades on preclinical and clinical research on inhalant effects. Neurotoxicology and teratology 87:106999. https://doi.org/10.1016/j.ntt.2021.106999. (PMID: 10.1016/j.ntt.2021.10699934087382)
      Daubert DL, Meadows GG, Wang JH, Sanchez PJ, Speth RC (1999) Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption. Brain Res 816(1):8–16. https://doi.org/10.1016/s0006-8993(98)00930-5. (PMID: 10.1016/s0006-8993(98)00930-59878677)
      Feng J, Ma H, Huang Y, Li J, Li W (2022) Ruminococcaceae_UCG-013 Promotes Obesity Resistance in Mice. Biomedicines 10(12):3272. https://doi.org/10.3390/biomedicines10123272. (PMID: 10.3390/biomedicines10123272365520299776008)
      Floresco SB, West AR, Ash B, Moorel H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973. https://doi.org/10.1038/nn1103. (PMID: 10.1038/nn110312897785)
      Fontes MA, Martins Lima A, Santos RA (2016) Brain angiotensin-(1–7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides 56:9–17. https://doi.org/10.1016/j.npep.2015.10.003. (PMID: 10.1016/j.npep.2015.10.00326584971)
      Fox J, Weisberg S (2011). An R companion to applied regression. Second edition. Sage, Thousand Oaks, (CA, USA). http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.
      Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, compact: The coronal plates and diagrams (3rd ed). Elsevier/Academic Press.
      Funada M, Sato M, Makino Y, Wada K (2002) Evaluation of rewarding effect of toluene by the conditioned place preference procedure in mice. Brain Res Brain Res Protoc 10(1):47–54. https://doi.org/10.1016/s1385-299x(02)00182-4. (PMID: 10.1016/s1385-299x(02)00182-412379437)
      Geuzaine A, Tirelli E (2014) Wheel-running mitigates psychomotor sensitization initiation but not post-sensitization conditioned activity and conditioned place preference induced by cocaine in mice. Behav Brain Res 262:57–67. https://doi.org/10.1016/j.bbr.2014.01.002. (PMID: 10.1016/j.bbr.2014.01.00224434305)
      Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HE, Fleshner M (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217(2):354–362. https://doi.org/10.1016/j.bbr.2010.11.005. (PMID: 10.1016/j.bbr.2010.11.00521070820)
      Grupp LA, Perlanski E, Stewart RB (1991) Regulation of alcohol consumption by the renin-angiotensin system: a review of recent findings and a possible mechanism of action. Neurosci Biobehav Rev 15(2):265–275. https://doi.org/10.1016/s0149-7634(05)80006-5. (PMID: 10.1016/s0149-7634(05)80006-51852316)
      Hoebel BG, Rada P, Mark GP, Hernandez L (1994) The power of integrative peptides to reinforce behavior by releasing dopamine. Ann N Y Acad Sci 739:36–41. https://doi.org/10.1111/j.1749-6632.1994.tb19805.x. (PMID: 10.1111/j.1749-6632.1994.tb19805.x7530431)
      Horn K, Dino G, Branstetter SA, Zhang J, Noerachmanto N, Jarrett T, Taylor M (2011) Effects of physical activity on teen smoking cessation. Pediatrics 128(4):e801-811. https://doi.org/10.1542/peds.2010-2599. (PMID: 10.1542/peds.2010-259921930544)
      Hosseini M, Sharifi MR, Alaei H, Shafei MN, Karimooy HA (2007) Effects of angiotensin II and captopril on rewarding properties of morphine. Indian J Exp Biol 45(9):770–777. (PMID: 17907742)
      Hosseini M, Alaei HA, Headari R, Eslamizadeh MJ (2009) Effects of microinjection of angiotensin II and captopril into nucleus accumbens on morphine self-administration in rats. Indian J Exp Biol 47(5):361–367. (PMID: 19579802)
      Howard MO, Bowen SE, Garland EL, Perron BE, Vaughn MG (2011) Inhalant use and inhalant use disorders in the United States. Addict Sci Clin Pract 6(1):18–31. (PMID: 220034193188822)
      Jackson L, Eldahshan W, Fagan SC, Ergul A (2018) Within the Brain: The Renin Angiotensin System. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030876.
      Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, ... , Cen X (2018) Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Neurotherapeutics 15(2): 500-510. https://doi.org/10.1007/s13311-018-0613-8.
      Kalinichev M, White DA, Holtzman SG (2004) Individual differences in locomotor reactivity to a novel environment and sensitivity to opioid drugs in the rat I Expression of morphine-induced locomotor sensitization. Psychopharmacology (Berl) 177(1–2):61–67. https://doi.org/10.1007/s00213-004-1990-8. (PMID: 10.1007/s00213-004-1990-815316716)
      Kangussu LM, Rocha NP, Valadão PAC, Machado TCG, Soares KB, Joviano-Santos JV, ... , Guatimosim C (2022) Renin-Angiotensin System in Huntington's Disease: Evidence from Animal Models and Human Patients. Int J Mol Sci 23(14). https://doi.org/10.3390/ijms23147686.
      Langsrud Ø (2003) ANOVA for unbalanced data: use type II instead of type II sums of squares. Stat Comput 13:163–167. (PMID: 10.1023/A:1023260610025)
      Lazaroni TL, Raslan AC, Fontes WR, de Oliveira ML, Bader M, Alenina N, ... , Pereira GS (2012) Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 97(1): 113-123. https://doi.org/10.1016/j.nlm.2011.10.003.
      Lett BT, Grant VL, Koh MT, Flynn G (2002) Prior experience with wheel running produces cross-tolerance to the rewarding effect of morphine. Pharmacol Biochem Behav 72(1–2):101–105. https://doi.org/10.1016/s0091-3057(01)00722-5. (PMID: 10.1016/s0091-3057(01)00722-511900775)
      Lynch WJ, Piehl KB, Acosta G, Peterson AB, Hemby SE (2010) Aerobic exercise attenuates reinstatement of cocaine-seeking behavior and associated neuroadaptations in the prefrontal cortex. Biol Psychiatry 68(8):774–777. https://doi.org/10.1016/j.biopsych.2010.06.022. (PMID: 10.1016/j.biopsych.2010.06.022206926472949528)
      Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA (2013) Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 37(8):1622–1644. https://doi.org/10.1016/j.neubiorev.2013.06.011. (PMID: 10.1016/j.neubiorev.2013.06.011238064393788047)
      Montes S, Yee-Rios Y, Páez-Martínez N (2019) Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: Comparison with melatonin. Brain Res Bull 144:58–67. https://doi.org/10.1016/j.brainresbull.2018.11.007. (PMID: 10.1016/j.brainresbull.2018.11.00730453037)
      Mustroph ML, Pinardo H, Merritt JR, Rhodes JS (2016) Parameters for abolishing conditioned place preference for cocaine from running and environmental enrichment in male C57BL/6J mice. Behav Brain Res 312:366–373. https://doi.org/10.1016/j.bbr.2016.06.049. (PMID: 10.1016/j.bbr.2016.06.049273639224970947)
      Nelson AM, Larson GA, Zahniser NR (2009) Low or high cocaine responding rats differ in striatal extracellular dopamine levels and dopamine transporter number. J Pharmacol Exp Ther 331(3):985–997. https://doi.org/10.1124/jpet.109.159897. (PMID: 10.1124/jpet.109.159897197295792784716)
      NIDA. National Institute on Drug Abuse. (2020). Inhalants DrugFacts. https://nida.nih.gov/publications/drugfacts/inhalants . Access Date: 30 June 2023.
      Oros-González A, Gallardo-Ortíz IA, Montes S, Del Valle-Mondragón L, Páez-Martínez N (2022) Captopril and losartan attenuate behavioural sensitization in mice chronically exposed to toluene. Behav Brain Res 418:113640. https://doi.org/10.1016/j.bbr.2021.113640. (PMID: 10.1016/j.bbr.2021.11364034757000)
      Oros-González A, Mercadillo RE, Mosco-Aquino R, Páez-Martínez N (2024) Toluene-induced behavioral sensitization is attenuated by voluntary physical exercise and social interaction. Adapt Behav 32(1):63–70. https://doi.org/10.1177/10597123231178941. (PMID: 10.1177/10597123231178941)
      Paez-Martinez N, Flores-Serrano Z, Ortiz-Lopez L, Ramirez-Rodriguez G (2013) Environmental enrichment increases doublecortin-associated new neurons and decreases neuronal death without modifying anxiety-like behavior in mice chronically exposed to toluene. Behav Brain Res 256:432–440. https://doi.org/10.1016/j.bbr.2013.09.007. (PMID: 10.1016/j.bbr.2013.09.00724012598)
      Páez-Martínez N, Pellicer F, González-Trujano ME, Cruz-López B (2020) Environmental enrichment reduces behavioural sensitization in mice previously exposed to toluene: The role of D1 receptors. Behav Brain Res 390:112624. https://doi.org/10.1016/j.bbr.2020.112624. (PMID: 10.1016/j.bbr.2020.11262432428634)
      Passos-Silva DG, Verano-Braga T, Santos RA (2013) Angiotensin-(1–7): beyond the cardio-renal actions. Clin Sci (Lond) 124(7):443–456. https://doi.org/10.1042/CS20120461. (PMID: 10.1042/CS2012046123249272)
      Paz MC, Marchese NA, Stroppa MM, Gerez de Burgos NM, Imboden H, Baiardi G, ... , Bregonzio C (2014) Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav Brain Res 272: 314-323. https://doi.org/10.1016/j.bbr.2014.07.021.
      Peterson AB, Abel JM, Lynch J (2014) Dose-dependent effects of wheel running on cocaine-seeking and prefrontal cortex Bdnf exon IV expression in rats. Psychopharmacology (Berl) 231(7):1305–1314. https://doi.org/10.1007/s00213-013-3321-4. (PMID: 10.1007/s00213-013-3321-424173624)
      Piazza PV, Deroche-Gamonet V (2013) A multistep general theory of transition to addiction. Psychopharmacology (Berl) 229(3):387–413. https://doi.org/10.1007/s00213-013-3224-4. (PMID: 10.1007/s00213-013-3224-423963530)
      Real T, Cruz SL, Medina-Mora ME, Robles R, González H (2021) Inhalant Addiction. In N. el-Guebaly, G. Carrà, M. Galanter, & A. M. Baldacchino (Eds.), Textbook of Addiction Treatment. Springer Nature. https://doi.org/10.1007/978-3-030-36391-8_20.
      Renteria Diaz L, Siontas D, Mendoza J, Arvanitogiannis A (2013) High levels of wheel running protect against behavioral sensitization to cocaine. Behav Brain Res 237:82–85. https://doi.org/10.1016/j.bbr.2012.09.014. (PMID: 10.1016/j.bbr.2012.09.01422985687)
      Scholl JL, Feng N, Watt MJ, Renner KJ, Forster GL (2009) Individual differences in amphetamine sensitization, behavior and central monoamines. Physiol Behav 96(3):493–504. https://doi.org/10.1016/j.physbeh.2008.12.001. (PMID: 10.1016/j.physbeh.2008.12.00119103211)
      Smith MA, Pitts EG (2012) Wheel running decreases the positive reinforcing effects of heroin. Pharmacol Rep 64(4):960–964. https://doi.org/10.1016/s1734-1140(12)70891-5. (PMID: 10.1016/s1734-1140(12)70891-5230871483760409)
      Smith MA, Fronk GE, Zhang H, Magee CP, Robinson AM (2016) Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output. Pharmacol Biochem Behav 150–151:94–99. https://doi.org/10.1016/j.pbb.2016.10.001. (PMID: 10.1016/j.pbb.2016.10.001277208015145778)
      Souza-Formigoni ML, De Lucca EM, Hipólide DC, Enns SC, Oliveira MG, Nobrega JN (1999) Sensitization to ethanol’s stimulant effect is associated with region-specific increases in brain D2 receptor binding. Psychopharmacology (Berl) 146(3):262–267. https://doi.org/10.1007/s002130051115. (PMID: 10.1007/s00213005111510541725)
      Steketee JD, Kalivas PW (2011) Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev 63(2):348–365. https://doi.org/10.1124/pr.109.001933. (PMID: 10.1124/pr.109.001933214901293082449)
      Team RDC (2011) R: a language and environment for statistical computing. Vienna (Austria). http://www.R-project.org/.
      Tezcan K, Yananli HR, Demirkapu MJ, Gören MZ, Sakalli HE, Colombo G, Gülhan R (2021) The effect of telmisartan, an angiotensin receptor blocker, on alcohol consumption and alcohol-induced dopamine release in the nucleus accumbens. Alcohol 96:73–81. https://doi.org/10.1016/j.alcohol.2021.08.004. (PMID: 10.1016/j.alcohol.2021.08.00434419631)
      Thanos PK, Stamos J, Robison LS, Heyman G, Tucci A, Wang GJ, ... , Volkow ND (2013) Daily treadmill exercise attenuates cocaine cue-induced reinstatement and cocaine induced locomotor response but increases cocaine-primed reinstatement. Behav Brain Res 239: 8-14. https://doi.org/10.1016/j.bbr.2012.10.035.
      Ussher M, Sampuran AK, Doshi R, West R, Drummond DC (2004) Acute effect of a brief bout of exercise on alcohol urges. Addiction 99(12):1542–1547. https://doi.org/10.1111/j.1360-0443.2004.00919.x. (PMID: 10.1111/j.1360-0443.2004.00919.x15585045)
      Visniauskas B, Perry JC, Oliveira V, Dalio FM, Andersen ML, Tufik S, Chagas JR (2012) Cocaine administration increases angiotensin I-converting enzyme (ACE) expression and activity in the rat striatum and frontal cortex. Neurosci Lett 506(1):84–88. https://doi.org/10.1016/j.neulet.2011.10.054. (PMID: 10.1016/j.neulet.2011.10.05422056483)
      Wright JW, Harding JW (2011) Brain renin-angiotensin–a new look at an old system. Prog Neurobiol 95(1):49–67. https://doi.org/10.1016/j.pneurobio.2011.07.001. (PMID: 10.1016/j.pneurobio.2011.07.00121777652)
      Xu X, Pan J, Li X, Cui Y, Mao Z, Wu B, ... , Liu Y (2019) Inhibition of Methamphetamine Self-Administration and Reinstatement by Central Blockade of Angiotensin II Receptor in Rats. J Pharmacol Exp Ther 369(2): 244-258. https://doi.org/10.1124/jpet.118.255729.
    • Grant Information:
      PAPIIT-DGAPA IN221123 Universidad Nacional Autónoma de México; IN226819 Universidad Nacional Autónoma de México
    • Contributed Indexing:
      Keywords: Addiction; Exercise; Inhalants; Locomotor sensitization; Renin angiotensin system; Time-dependent effect; Toluene; Voluntary wheel running
    • Accession Number:
      3FPU23BG52 (Toluene)
    • Publication Date:
      Date Created: 20240605 Date Completed: 20240930 Latest Revision: 20240930
    • Publication Date:
      20250114
    • Accession Number:
      10.1007/s00213-024-06626-5
    • Accession Number:
      38839630