Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Insights into muscle metabolic energetics: Modelling muscle-tendon mechanics and metabolic rates during walking across speeds.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238922 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7358 (Electronic) Linking ISSN: 1553734X NLM ISO Abbreviation: PLoS Comput Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science, [2005]-
    • Subject Terms:
    • Abstract:
      The metabolic energy rate of individual muscles is impossible to measure without invasive procedures. Prior studies have produced models to predict metabolic rates based on experimental observations of isolated muscle contraction from various species. Such models can provide reliable predictions of metabolic rates in humans if muscle properties and control are accurately modeled. This study aimed to examine how muscle-tendon model individualization and metabolic energy models influenced estimation of muscle-tendon states and time-series metabolic rates, to evaluate the agreement with empirical data, and to provide predictions of the metabolic rate of muscle groups and gait phases across walking speeds. Three-dimensional musculoskeletal simulations with prescribed kinematics and dynamics were performed. An optimal control formulation was used to compute muscle-tendon states with four levels of individualization, ranging from a scaled generic model and muscle controls based on minimal activations, inclusion of calibrated muscle passive forces, personalization of Achilles and quadriceps tendon stiffnesses, to finally informing muscle controls with electromyography. We computed metabolic rates based on existing models. Simulations with calibrated passive forces and personalized tendon stiffness most accurately estimate muscle excitations and fiber lengths. Interestingly, the inclusion of electromyography did not improve our estimates. The whole-body average metabolic cost was better estimated with a subset of metabolic energy models. We estimated metabolic rate peaks near early stance, pre-swing, and initial swing at all walking speeds. Plantarflexors accounted for the highest cost among muscle groups at the preferred speed and were similar to the cost of hip adductors and abductors combined. Also, the swing phase accounted for slightly more than one-quarter of the total cost in a gait cycle, and its relative cost decreased with walking speed. Our prediction might inform the design of assistive devices and rehabilitation treatment. The code and experimental data are available online.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Luis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      J Biomech. 2007;40(12):2628-35. (PMID: 17359981)
      J Biomech. 2007;40(8):1768-75. (PMID: 17101140)
      Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):977-82. (PMID: 22219360)
      J Appl Physiol (1985). 2015 May 15;118(10):1266-75. (PMID: 25814636)
      J Biomech. 2004 Jan;37(1):81-8. (PMID: 14672571)
      Front Bioeng Biotechnol. 2020 Nov 26;8:588925. (PMID: 33324623)
      J Biomech. 2015 May 1;48(7):1277-85. (PMID: 25817475)
      Front Bioeng Biotechnol. 2016 Oct 13;4:77. (PMID: 27790612)
      J Biomech. 2012 May 11;45(8):1463-71. (PMID: 22507351)
      J Exp Biol. 2014 Nov 15;217(Pt 22):4018-28. (PMID: 25278469)
      J Biomech. 2014 Apr 11;47(6):1373-81. (PMID: 24581797)
      J Exp Biol. 2005 Aug;208(Pt 15):2831-43. (PMID: 16043588)
      PLoS Comput Biol. 2016 May 13;12(5):e1004912. (PMID: 27175486)
      Sci Rep. 2022 Jun 29;12(1):11004. (PMID: 35768486)
      J Orthop Sports Phys Ther. 2007 Jul;37(7):372-9. (PMID: 17710906)
      J Orthop Sports Phys Ther. 2019 Sep;49(9):627-630. (PMID: 31475629)
      Hum Nutr Clin Nutr. 1987 Nov;41(6):463-71. (PMID: 3429265)
      PLoS Comput Biol. 2020 Oct 28;16(10):e1008280. (PMID: 33112850)
      J Biomech Eng. 2003 Feb;125(1):70-7. (PMID: 12661198)
      Int J Sports Med. 2024 May;45(5):335-342. (PMID: 37956876)
      PLoS One. 2017 Jul 12;12(7):e0180320. (PMID: 28700630)
      J Appl Physiol (1985). 2005 Aug;99(2):603-8. (PMID: 15845776)
      J R Soc Interface. 2019 Aug 30;16(157):20190402. (PMID: 31431186)
      J Biomech Eng. 2015 Feb 1;137(2):020905. (PMID: 25474098)
      J Appl Physiol (1985). 2014 Dec 1;117(11):1406-15. (PMID: 25257873)
      J Electromyogr Kinesiol. 2000 Oct;10(5):361-74. (PMID: 11018445)
      Crit Rev Biomed Eng. 1989;17(4):359-411. (PMID: 2676342)
      J Biomech. 2014 Feb 07;47(3):631-8. (PMID: 24368144)
      Proc Biol Sci. 2023 Sep 13;290(2006):20231469. (PMID: 37670588)
      IEEE Trans Biomed Eng. 2016 Oct;63(10):2068-79. (PMID: 27392337)
      Phys Ther. 2010 Feb;90(2):157-74. (PMID: 20023002)
      Proc R Soc Lond B Biol Sci. 1951 Dec 31;139(894):104-17. (PMID: 14911817)
      Age Ageing. 1997 Jan;26(1):15-9. (PMID: 9143432)
      Ann Biomed Eng. 2017 Dec;45(12):2762-2774. (PMID: 28900782)
      J Biomech. 2003 Jun;36(6):765-76. (PMID: 12742444)
      Exerc Sport Sci Rev. 2005 Apr;33(2):88-97. (PMID: 15821430)
      Gait Posture. 1999 Jul;9(3):207-31. (PMID: 10575082)
      J Exp Biol. 2021 Jun 15;224(12):. (PMID: 34096594)
      Br J Anaesth. 2007 Sep;99(3):309-11. (PMID: 17702826)
      J Neuroeng Rehabil. 2019 May 15;16(1):57. (PMID: 31092269)
      J Exp Biol. 2017 Jun 01;220(Pt 11):2082-2095. (PMID: 28341663)
      J Physiol Sci. 2017 Jan;67(1):19-43. (PMID: 27412384)
      J Neurophysiol. 2015 Oct;114(4):2509-27. (PMID: 26245321)
      J Biomech. 2006;39(8):1383-91. (PMID: 15972213)
      Comput Methods Biomech Biomed Engin. 2003 Apr;6(2):99-111. (PMID: 12745424)
      J Anat. 2020 Nov;237(5):941-959. (PMID: 32598483)
      Front Bioeng Biotechnol. 2022 Oct 06;10:1002731. (PMID: 36277379)
      J R Soc Interface. 2010 Sep 6;7(50):1329-40. (PMID: 20356877)
      J Biomech. 2006;39(3):536-43. (PMID: 16389094)
      Nat Commun. 2021 Jul 13;12(1):4312. (PMID: 34257310)
      Ann Biomed Eng. 2016 Oct;44(10):2922-2936. (PMID: 27001399)
      Nature. 2015 Jun 11;522(7555):212-5. (PMID: 25830889)
      Gait Posture. 1999 Mar;9(1):1-9. (PMID: 10575064)
      PLoS One. 2016 Mar 01;11(3):e0150378. (PMID: 26930416)
      J Exp Biol. 2021 May 1;224(9):. (PMID: 33707194)
      PLoS One. 2016 Sep 22;11(9):e0163417. (PMID: 27656901)
      J Exp Biol. 2017 Nov 15;220(Pt 22):4252-4260. (PMID: 28954818)
      J Appl Physiol (1985). 2018 May 1;124(5):1333-1340. (PMID: 29420151)
      PLoS One. 2019 Sep 18;14(9):e0222037. (PMID: 31532796)
      IEEE Trans Biomed Eng. 2017 Sep;64(9):2253-2262. (PMID: 27875132)
      Acta Physiol Scand. 1997 Nov;161(3):361-70. (PMID: 9401589)
      Proc Biol Sci. 2020 Aug 26;287(1933):20200431. (PMID: 32811308)
      Proc Biol Sci. 2022 Oct 26;289(1985):20221189. (PMID: 36285498)
      Sci Rep. 2018 Mar 22;8(1):5066. (PMID: 29567999)
      J Biomech. 2008 Jul 19;41(10):2082-9. (PMID: 18606419)
      J Exp Biol. 2014 Apr 15;217(Pt 8):1218-28. (PMID: 24363410)
      Front Psychol. 2017 Apr 07;8:456. (PMID: 28439244)
      J Appl Physiol (1985). 2012 Nov;113(10):1537-44. (PMID: 23042907)
      Clin Orthop Relat Res. 2009 Apr;467(4):1074-82. (PMID: 18972175)
    • Publication Date:
      Date Created: 20240913 Date Completed: 20240925 Latest Revision: 20240927
    • Publication Date:
      20250114
    • Accession Number:
      PMC11424009
    • Accession Number:
      10.1371/journal.pcbi.1012411
    • Accession Number:
      39269982