Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Influence of the use of an adhesive connection on the joint strength of modular hip endoprostheses.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science
- Subject Terms:
- Abstract:
Competing Interests: The authors have declared that no competing interests exist.
Introduction: Modular hip implants enables a more precise adaptation of the prosthesis to the patient's anatomy. However, they also carry the risk of increased revision rates due to micromotion at the taper junction. In order to minimize this risk, one potential solution is to establish an adhesive bond between the metal taper junctions. Load-stable bonding techniques, already successfully employed in dentistry for connecting materials such as metals and ceramics or different alloys, offer a promising approach. Nevertheless, the bond strength of tapered adhesive bonds in modular hip implants has not been investigated to date.
Materials and Methods: Twenty-eight tapered junctions, consisting of a taper (female taper) and a trunnion (male taper) were turned using TiAl6V4 ELI (n = 16) and CoCr28Mo6 (n = 12). The process parameters cutting speed (vc = 50 m/min or 100 m/min) and feed (f = 0.1 mm, 0.05 mm or 0.2 mm) were varied for the trunnions. For each set of process parameters, one trunnion and one taper were additionally subjected to sandblasting. To investigate the effect of geometry, angular mismatch in the samples were measured. The taper pairs were bonded with a biocompatible adhesive, and push-out tests were subsequently performed.
Results: The push-out forces generated from the taper connections where both tapers were sandblasted showed a mean push-out force of 5.70 kN. For the samples with only the trunnion sandblasted, the mean force was 0.58 kN, while for the samples with only taper sandblasted the mean push-out force was 1.32 kN. When neither of the tapers was sandblasted the mean push-out force was 0.91 kN. No significant effect of the process parameters on the push-out force was observed. Only the reduced valley depth Svk showed a slight correlation for the CoCr28Mo6 samples (R2 = 0.54). The taper pairs with taper mismatch (between trunnion and taper) greater than |0.1°| did not show lower push-out forces than the specimens with lower taper mismatch.
Conclusions: Sandblasted and adhesive-bonded tapered connections represent a viable suitable alternative for modular hip implant connections. Slight differences in taper geometry do not result in reduced push-out forces and are compensated by the adhesive. In mechanically joined tapers these differences can lead to higher wear rates. Further investigation under realistic test conditions is necessary to assess long-term suitability.
(Copyright: © 2024 Einfeldt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
J Biomed Mater Res. 1993 Dec;27(12):1533-44. (PMID: 8113241)
J Arthroplasty. 2017 Oct;32(10):3200-3205. (PMID: 28625686)
J Orthop Res. 2013 Aug;31(8):1165-71. (PMID: 23553890)
Med Eng Phys. 2014 Mar;36(3):300-7. (PMID: 24332894)
Eur J Oral Sci. 2000 Oct;108(5):456-60. (PMID: 11037763)
J Adv Prosthodont. 2018 Aug;10(4):308-314. (PMID: 30140398)
Eur J Prosthodont Restor Dent. 2003 Sep;11(3):119-24. (PMID: 14562649)
Oper Dent. 2021 Jan 1;46(1):E21-E33. (PMID: 32926155)
J Oral Sci. 2022 Jul 1;64(3):181-184. (PMID: 35584941)
J Mech Behav Biomed Mater. 2017 May;69:257-266. (PMID: 28110182)
BMC Musculoskelet Disord. 2010 Jan 04;11:3. (PMID: 20047653)
Materials (Basel). 2021 May 01;14(9):. (PMID: 34062734)
BMC Oral Health. 2023 Oct 24;23(1):784. (PMID: 37875871)
Clin Biomech (Bristol). 2012 Jan;27(1):77-83. (PMID: 21903309)
Med Eng Phys. 2017 Jan;39:94-101. (PMID: 27913177)
J Arthroplasty. 2018 Jul;33(7S):S270-S274. (PMID: 29428467)
Comput Methods Biomech Biomed Engin. 2019 Oct;22(13):1061-1072. (PMID: 31204490)
J Orthop Res. 2023 Feb;41(2):418-425. (PMID: 35488727)
J Biomech. 2011 Jun 3;44(9):1747-51. (PMID: 21531416)
- Accession Number:
0 (Adhesives)
0 (Alloys)
- Publication Date:
Date Created: 20241118 Date Completed: 20241118 Latest Revision: 20241120
- Publication Date:
20250114
- Accession Number:
PMC11573162
- Accession Number:
10.1371/journal.pone.0313964
- Accession Number:
39556561
No Comments.