Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Behavior of Silver Species in Soil: Ag Nanoparticles vs. Ionic Ag.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 100964009 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-3049 (Electronic) Linking ISSN: 14203049 NLM ISO Abbreviation: Molecules Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, c1995-
    • Abstract:
      Silver nanoparticles are one of the most commonly used forms of silver (Ag) in nanotechnology applications due to their antibacterial properties and electrical and thermal resistance. The increasing production and use of products containing nanoparticles has led to their release into and contamination of soil and water. This review summarizes the literature on the fate, behavior (adsorption/desorption, precipitation/oxidative dissolution, transformation), and transport/mobility of Ag forms in soils (Ag + ions and Ag nanoparticles-AgNPs). The behavior of Ag + /AgNPs in soil is a complex process. It depends on many factors, including the characteristics of the Ag forms (ions, nanoparticle size, ligand type used for coating, surface charge, initial Ag concentration), the soil properties (organic matter and clay mineral content, textural properties, point of zero charge, cation exchange capacity, surface functional groups), and the solute properties (pH-Eh, ionic strength, cation type, oxygen content). The binding of Ag + and AgNPs is significantly positively correlated with Al/Fe/Mn oxide and SOM content and depends on the surface charge of the minerals and CEC, which controls adsorption processes. Very important parameters to consider are the pH and Eh of the solution, which determine the durability of the ligands, the aggregation rate and the oxidation process of AgNPs, as well as the presence of sulfide and chloride and the Cl/Ag ratio, which determine the stability/mobility of Ag. Since AgNPs can be oxidized to Ag + ions during their life cycle, it is necessary to consider the behavior of both forms of Ag in soils. Understanding the transport and behavior of Ag in soil is essential for the environmental risk assessment and management of wastes containing Ag.
    • References:
      Environ Sci Technol. 2013 May 21;47(10):5083-91. (PMID: 23621856)
      Environ Sci Technol. 2014 Nov 4;48(21):12628-35. (PMID: 25251386)
      J Hazard Mater. 2017 Jan 15;322(Pt A):318-324. (PMID: 26412016)
      J Hazard Mater. 2019 Oct 15;378:120735. (PMID: 31203124)
      Sci Total Environ. 2016 Sep 1;563-564:933-43. (PMID: 26725442)
      Int J Biol Macromol. 2017 May;98:877-886. (PMID: 28215565)
      Chemosphere. 2018 Jan;191:324-334. (PMID: 29045933)
      Sci Total Environ. 2013 Jun 1;454-455:119-31. (PMID: 23542485)
      Sci Total Environ. 2019 Jan 15;648:102-108. (PMID: 30114581)
      Environ Sci Technol. 2020 Nov 3;54(21):13538-13547. (PMID: 33052663)
      Huan Jing Ke Xue. 2010 Apr;31(4):1085-91. (PMID: 20527196)
      J Environ Sci (China). 2015 Aug 1;34:116-25. (PMID: 26257354)
      J Contam Hydrol. 2020 Jun;232:103606. (PMID: 32081515)
      Environ Sci Technol. 2011 May 1;45(9):3895-901. (PMID: 21456573)
      Environ Sci Technol. 2016 Feb 16;50(4):1759-68. (PMID: 26756906)
      Environ Pollut. 2015 Aug;203:191-198. (PMID: 25910462)
      Environ Pollut. 2015 Nov;206:582-7. (PMID: 26310977)
      Langmuir. 2015 Dec 15;31(49):13361-72. (PMID: 26595806)
      Environ Sci Technol. 2008 Jun 1;42(11):4133-9. (PMID: 18589977)
      Environ Sci Technol. 2012 Jul 3;46(13):6915-24. (PMID: 22452441)
      Langmuir. 2008 Mar 18;24(6):2525-31. (PMID: 18260681)
      Sci Total Environ. 2019 Oct 20;688:288-298. (PMID: 31233912)
      Water Res. 2013 Aug 1;47(12):3866-77. (PMID: 23571111)
      Chemosphere. 2012 Sep;89(1):96-101. (PMID: 22583785)
      Sci Total Environ. 2013 Oct 1;463-464:120-30. (PMID: 23792254)
      J Contam Hydrol. 2006 Jan 5;82(1-2):99-117. (PMID: 16290313)
      Chemosphere. 2019 Feb;216:297-305. (PMID: 30384298)
      Chem Asian J. 2010 Feb 1;5(2):285-93. (PMID: 20063340)
      Environ Pollut. 2009 Apr;157(4):1101-9. (PMID: 19081659)
      Materials (Basel). 2013 Jun 05;6(6):2295-2350. (PMID: 28809275)
      J Hazard Mater. 2011 May 15;189(1-2):556-63. (PMID: 21429667)
      Sci Total Environ. 2015 Dec 1;535:102-12. (PMID: 25527873)
      Nanomaterials (Basel). 2020 Mar 26;10(4):. (PMID: 32224934)
      Toxicol Sci. 2006 Mar;90(1):23-32. (PMID: 16396841)
      Environ Sci Technol. 2006 Dec 15;40(24):7688-93. (PMID: 17256514)
      Water Res. 2016 Jan 1;88:403-427. (PMID: 26519626)
      Environ Sci Technol. 2012 Jul 3;46(13):6925-33. (PMID: 22680837)
      Environ Sci Technol. 2010 Mar 15;44(6):2169-75. (PMID: 20175529)
      Environ Sci Technol. 2009 Oct 1;43(19):7285-90. (PMID: 19848135)
      Beilstein J Nanotechnol. 2015 Aug 21;6:1769-80. (PMID: 26425429)
      Environ Sci Technol. 2001 Jun 15;35(12):2512-7. (PMID: 11432556)
      J Nanopart Res. 2015;17(11):448. (PMID: 26617464)
      Nano Lett. 2006 Aug;6(8):1794-807. (PMID: 16895376)
      Environ Sci Technol. 2013 Feb 5;47(3):1349-56. (PMID: 23298221)
      Sci Total Environ. 2020 Jun 20;722:137794. (PMID: 32199365)
      Environ Pollut. 2013 May;176:193-7. (PMID: 23434771)
      Chemosphere. 2012 Jul;88(5):670-5. (PMID: 22516207)
      Mater Sci Eng C Mater Biol Appl. 2018 Sep 1;90:739-749. (PMID: 29853145)
      Environ Sci Technol. 2012 Jul 3;46(13):6900-14. (PMID: 22339502)
      Chemosphere. 2013 Sep;93(2):359-65. (PMID: 23732009)
      Environ Sci Technol. 2015 Jan 20;49(2):897-905. (PMID: 25436975)
      Environ Sci Technol. 2009 Nov 1;43(21):8113-8. (PMID: 19924931)
      Environ Pollut. 2014 Oct;193:102-110. (PMID: 25014017)
      Environ Sci Technol. 2011 Apr 15;45(8):3238-44. (PMID: 21162562)
      Environ Sci Technol. 2013 Aug 20;47(16):9148-56. (PMID: 23883329)
      Chem Cent J. 2013 Apr 25;7(1):75. (PMID: 23617903)
      Sci Total Environ. 2005 Jun 1;345(1-3):191-205. (PMID: 15919539)
      Environ Sci Technol. 2013 Jan 15;47(2):757-64. (PMID: 23237319)
      Sci Total Environ. 2023 Jan 10;855:158710. (PMID: 36099954)
      J Colloid Interface Sci. 2010 Apr 15;344(2):362-71. (PMID: 20144834)
      Environ Sci Technol. 2014;48(5):2526-40. (PMID: 24499408)
      Environ Int. 2013 Mar;53:62-73. (PMID: 23347947)
      Environ Int. 2003 Mar;28(8):783-91. (PMID: 12605928)
      Environ Sci Technol. 2010 Feb 15;44(4):1260-6. (PMID: 20099802)
      Environ Sci Technol. 2011 May 1;45(9):3902-8. (PMID: 21466186)
      J Environ Qual. 2009 May 20;38(4):1528-30. (PMID: 19465729)
      Environ Health Toxicol. 2013 May 07;28:e2013006. (PMID: 23700566)
      Sci Total Environ. 2013 Sep 1;461-462:19-27. (PMID: 23712112)
      Environ Toxicol Chem. 2009 Jun;28(6):1191-9. (PMID: 19175296)
      Talanta. 2015 Nov 1;144:1377-86. (PMID: 26452972)
      Environ Sci Pollut Res Int. 2014 Oct;21(20):11823-31. (PMID: 24458938)
      Environ Sci Technol. 2013 May 7;47(9):4140-6. (PMID: 23517230)
      Sci Total Environ. 2012 Jul 1;429:325-31. (PMID: 22578844)
      J Contam Hydrol. 2014 Aug;164:35-48. (PMID: 24926609)
      Sci Total Environ. 2015 Dec 1;535:54-60. (PMID: 25434472)
      Sci Total Environ. 2017 Jan 1;575:231-246. (PMID: 27744152)
      Sci Total Environ. 2017 Feb 1;578:633-648. (PMID: 27863868)
      Water Air Soil Pollut. 2018;229(10):334. (PMID: 30416217)
      J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(9):891-900. (PMID: 26061202)
      Environ Toxicol Chem. 2012 Jan;31(1):50-9. (PMID: 22038832)
      Sci Total Environ. 2019 Jan 15;648:854-860. (PMID: 30138885)
      J Contam Hydrol. 2012 Aug;136-137:86-95. (PMID: 22698948)
      Environ Pollut. 2018 Jul;238:1027-1034. (PMID: 29449114)
      Part Fibre Toxicol. 2010 Apr 01;7:8. (PMID: 20359338)
      Environ Sci Technol. 2012 Jan 17;46(2):752-9. (PMID: 22142034)
      Environ Sci Technol. 2011 Jul 1;45(13):5564-71. (PMID: 21630686)
      J Contam Hydrol. 2018 Feb;209:61-67. (PMID: 29396180)
      Sci Total Environ. 2012 Mar 15;420:327-33. (PMID: 22326137)
      Environ Sci Technol. 2013;47(21):12229-37. (PMID: 24106877)
      Environ Pollut. 2014 Aug;191:151-7. (PMID: 24836503)
      Environ Pollut. 2013 Nov;182:141-9. (PMID: 23911623)
      Water Res. 2020 Mar 1;170:115332. (PMID: 31810034)
      Nat Commun. 2022 Jul 1;13(1):3797. (PMID: 35778395)
      Langmuir. 2010 Nov 16;26(22):16690-8. (PMID: 20879768)
      J Hazard Mater. 2021 Sep 15;418:126368. (PMID: 34329024)
      J Environ Sci (China). 2019 Sep;83:205-216. (PMID: 31221383)
      Environ Sci Technol. 2014 Aug 19;48(16):8946-62. (PMID: 25082801)
      Environ Sci Technol. 2011 May 15;45(10):4422-8. (PMID: 21513312)
      Langmuir. 2008 Nov 4;24(21):12385-91. (PMID: 18823134)
      Talanta. 1998 Jul;46(3):449-55. (PMID: 18967165)
      Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:881-898. (PMID: 30033323)
      Environ Pollut. 2023 Apr 1;322:121121. (PMID: 36681379)
      J Hazard Mater. 2016 May 15;309:133-50. (PMID: 26882524)
    • Grant Information:
      UMO-2012/07/B/ST8/03753 National Science Center
    • Contributed Indexing:
      Keywords: Fe (oxyhydr)oxides; adsorption; clay minerals; oxidative dissolution; sequential chemical extraction; silver forms; soil organic matter
    • Publication Date:
      Date Created: 20241217 Latest Revision: 20250104
    • Publication Date:
      20250114
    • Accession Number:
      PMC11643404
    • Accession Number:
      10.3390/molecules29235531
    • Accession Number:
      39683691