Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Kaposi's sarcoma-associated herpesvirus (KSHV) gB dictates a low-pH endocytotic entry pathway as revealed by a dual-fluorescent virus system and a rhesus monkey rhadinovirus expressing KSHV gB.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science, c2005-
- Subject Terms:
- Abstract:
Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger. To analyze KSHV entry at the single particle level we developed dual-fluorescent recombinant KSHV strains that incorporate fluorescent protein-tagged glycoproteins and capsid proteins. In addition, we generated a hybrid rhesus monkey rhadinovirus (RRV) that expresses KSHV gB in place of RRV gB to analyze gB-dependent differences in infection pathways. We demonstrated lytic reactivation and infectivity of dual-fluorescent KSHV. Confocal microscopy was used to quantify co-localization of fluorescently-tagged glycoproteins and capsid proteins. Using the ratio of dual-positive KSHV particles to single-positive capsids as an indicator of fusion events we established KSHV fusion kinetics upon infection of different target cells with marked differences in the "time-to-fusion" between cell types. Inhibition of vesicle acidification prevented KSHV particle-cell fusion, implicating low vesicle pH as a requirement. These findings were corroborated by comparison of RRV-YFP wildtype reporter virus and RRV-YFP encoding KSHV gB in place of RRV gB. While RRV wt infection of receptor-overexpressing cells was unaffected by inhibition of vesicle acidification, RRV-YFP expressing KSHV gB was sensitive to Bafilomycin A1, an inhibitor of vacuolar acidification. Single- and dual-fluorescent KSHV strains eliminate the need for virus-specific antibodies and enable the tracking of single viral particles during entry and fusion. Together with a hybrid RRV expressing KSHV gB and classical fusion assays, these novel tools identify low vesicle pH as an endocytotic trigger for KSHV membrane fusion.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- References:
Gene. 1991 Dec 15;108(2):193-9. (PMID: 1660837)
J Virol. 2014 Aug;88(16):8724-34. (PMID: 24899181)
Nat Rev Dis Primers. 2019 Jan 31;5(1):9. (PMID: 30705286)
J Virol. 2014 Aug;88(16):9335-49. (PMID: 24899205)
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E28-E36. (PMID: 27974607)
mBio. 2019 Feb 19;10(1):. (PMID: 30782663)
J Virol. 2003 Jul;77(14):7978-90. (PMID: 12829837)
Virology. 2006 Oct 10;354(1):7-14. (PMID: 16889811)
J Virol. 2020 Nov 23;94(24):. (PMID: 33028710)
PLoS Biol. 2021 Sep 9;19(9):e3001392. (PMID: 34499637)
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18021-18030. (PMID: 31427511)
PLoS Pathog. 2013;9(7):e1003510. (PMID: 23874206)
J Virol. 2009 May;83(10):4895-911. (PMID: 19279100)
J Virol. 2019 Jul 17;93(15):. (PMID: 31118261)
J Gen Virol. 2008 Jun;89(Pt 6):1352-1363. (PMID: 18474550)
J Biol Chem. 1991 Sep 15;266(26):17707-12. (PMID: 1832676)
Nat Med. 2012 Jun;18(6):961-6. (PMID: 22635007)
Cell. 2002 Feb 8;108(3):407-19. (PMID: 11853674)
Science. 2006 Mar 31;311(5769):1921-4. (PMID: 16574866)
J Immunol. 2006 Feb 1;176(3):1741-9. (PMID: 16424204)
Virology. 2001 Jun 5;284(2):235-49. (PMID: 11384223)
Biotechniques. 2006 Feb;40(2):191-7. (PMID: 16526409)
Traffic. 2016 Sep;17(9):965-75. (PMID: 27126894)
J Virol. 2009 Jan;83(1):396-407. (PMID: 18945775)
J Virol. 2001 Dec;75(23):11583-93. (PMID: 11689640)
Mol Immunol. 2006 Apr;43(10):1665-75. (PMID: 16442624)
J Virol. 2006 Jan;80(2):710-22. (PMID: 16378974)
Virus Res. 2014 Sep 22;190:97-103. (PMID: 25018023)
J Virol. 2003 Jul;77(14):8147-52. (PMID: 12829853)
J Virol. 1992 Jun;66(6):3409-14. (PMID: 1316456)
PLoS Pathog. 2021 Mar 3;17(3):e1008979. (PMID: 33657166)
J Mol Biol. 2004 Jul 16;340(4):783-95. (PMID: 15223320)
Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327-31. (PMID: 28524)
Front Biosci (Landmark Ed). 2009 Jun 01;14(14):5339-60. (PMID: 19482617)
PLoS Pathog. 2014 Feb 13;10(2):e1003941. (PMID: 24550731)
J Virol. 2020 Oct 14;94(21):. (PMID: 32847853)
J Virol Methods. 2011 Jun;174(1-2):12-21. (PMID: 21419799)
Methods Mol Biol. 2013;1064:201-9. (PMID: 23996259)
Front Microbiol. 2012 Mar 02;3:73. (PMID: 22403576)
Sci Adv. 2023 May 24;9(21):eadg1778. (PMID: 37224259)
J Virol. 1997 Dec;71(12):9764-9. (PMID: 9371642)
J Gen Virol. 2001 Jun;82(Pt 6):1419-1422. (PMID: 11369886)
Nat Microbiol. 2022 Aug;7(8):1161-1179. (PMID: 35798890)
Int J Cancer. 2013 Apr 15;132(8):1954-8. (PMID: 22987579)
mBio. 2021 Dec 21;12(6):e0211321. (PMID: 34933450)
Virology. 2001 Apr 10;282(2):245-55. (PMID: 11289807)
Viruses. 2019 Nov 18;11(11):. (PMID: 31752107)
J Virol. 2016 Jun 24;90(14):6216-6223. (PMID: 27122579)
J Clin Oncol. 2005 Aug 1;23(22):5224-8. (PMID: 16051964)
Virology. 2014 Sep;464-465:118-133. (PMID: 25063885)
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10):. (PMID: 33674386)
Nat Methods. 2017 Jan;14(1):53-56. (PMID: 27869816)
PLoS Pathog. 2018 Feb 12;14(2):e1006912. (PMID: 29432452)
J Virol. 2010 Nov;84(22):11709-17. (PMID: 20826690)
J Virol. 2002 May;76(9):4390-400. (PMID: 11932406)
J Virol. 2024 Nov 19;98(11):e0119424. (PMID: 39470208)
Viruses. 2022 Mar 05;14(3):. (PMID: 35336948)
Curr Opin HIV AIDS. 2009 Jan;4(1):22-6. (PMID: 19339936)
PLoS Pathog. 2013;9(5):e1003360. (PMID: 23696734)
Nat Rev Microbiol. 2021 Feb;19(2):110-121. (PMID: 33087881)
J Vis Exp. 2017 Jan 2;(119):. (PMID: 28117810)
J Virol. 2001 Mar;75(6):2879-90. (PMID: 11222713)
PLoS Pathog. 2009 Jul;5(7):e1000512. (PMID: 19593382)
J Virol. 2021 Apr 12;95(9):. (PMID: 33608407)
Virology. 1992 Nov;191(1):387-95. (PMID: 1329327)
- Grant Information:
P51 OD011092 United States OD NIH HHS; R01 CA075922 United States CA NCI NIH HHS
- Accession Number:
0 (Viral Envelope Proteins)
0 (glycoprotein B, human herpesvirus 8)
- Publication Date:
Date Created: 20250117 Date Completed: 20250206 Latest Revision: 20250208
- Publication Date:
20250208
- Accession Number:
PMC11801733
- Accession Number:
10.1371/journal.ppat.1012846
- Accession Number:
39820197
No Comments.