Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Rib suppression-based radiomics for diagnosis of neonatal respiratory distress syndrome in chest X-rays.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Source:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- Publication Information:
Original Publication: London : Nature Publishing Group, copyright 2011-
- Subject Terms:
- Abstract:
This study aims to refine a radiomics-based diagnostic approach for detecting neonatal respiratory distress syndrome (NRDS) and examines the influence of rib suppression on the diagnostic precision of radiomics models using neonatal chest X-ray (CXR) images. A total of 138 CXR images were collected in this study. The data was partitioned into training and validation subsets based on chronological order. We applied rib suppression to the CXR images and extracted and analyzed radiomic features from lung regions both before and after rib suppression. This approach was designed to identify NRDS, develop radiomics models, and assess the impact of rib suppression on model performance. To establish these radiomics models, six machine learning models were utilized in the study. The performance was evaluated using the area under the receiver operating characteristic curve (AUC). On the validation set, the models demonstrated significant improvements after rib suppression. Specifically, the Gradient Boosting Machine (GBM) achieved an AUC of 0.781 post-suppression compared to 0.556 pre-suppression. Notably, Linear Discriminant Analysis (LDA) and Logistic Regression (LR) performed particularly well when combining features from both scenarios, achieving AUCs of 0.762 and 0.756. The results indicate the feasibility of developing radiomics models for diagnosing NRDS and highlight the enhancement in model performance due to rib suppression. This study provides a promising new method for the imaging diagnosis and prognosis evaluation of neonatal respiratory distress syndrome, showcasing the potential of radiomics in pediatric imaging.
Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
(© 2025. The Author(s).)
- References:
Semin Cancer Biol. 2023 Nov;96:11-25. (PMID: 37704183)
Radiology. 2016 Feb;278(2):563-77. (PMID: 26579733)
Front Pediatr. 2022 Jan 21;9:803143. (PMID: 35127597)
AJR Am J Roentgenol. 2000 Jan;174(1):71-4. (PMID: 10628457)
Lancet Digit Health. 2022 Jun;4(6):e406-e414. (PMID: 35568690)
Pediatr Pulmonol. 2019 Apr;54(4):405-414. (PMID: 30663263)
Comput Methods Programs Biomed. 2022 Mar;215:106627. (PMID: 35032722)
Pediatr Pulmonol. 2021 Sep;56(9):3013-3025. (PMID: 34215018)
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:247-251. (PMID: 35571507)
Neonatology. 2023;120(1):3-23. (PMID: 36863329)
Med Phys. 2022 May;49(5):3213-3222. (PMID: 35263458)
Sci Rep. 2022 Jul 26;12(1):12747. (PMID: 35882938)
Sci Rep. 2015 Aug 17;5:13087. (PMID: 26278466)
Eur Radiol. 2023 Jun;33(6):4205-4213. (PMID: 36604329)
J Multidiscip Healthc. 2024 Jan 03;17:1-9. (PMID: 38192739)
Diagnostics (Basel). 2022 Oct 27;12(11):. (PMID: 36359456)
Quant Imaging Med Surg. 2021 May;11(5):1836-1853. (PMID: 33936969)
J Matern Fetal Neonatal Med. 2011 Jan;24(1):148-51. (PMID: 20528218)
Int J Educ Technol High Educ. 2021;18(1):63. (PMID: 34873580)
Diagnostics (Basel). 2023 Sep 01;13(17):. (PMID: 37685380)
Pediatr Rev. 2014 Oct;35(10):417-28; quiz 429. (PMID: 25274969)
Lancet Glob Health. 2013 Jul;1(1):e26-36. (PMID: 25103583)
Radiology. 2020 May;295(2):328-338. (PMID: 32154773)
Mach Vis Appl. 2021;32(4):100. (PMID: 34219975)
Quant Imaging Med Surg. 2021 Dec;11(12):4807-4819. (PMID: 34888191)
Med Biol Eng Comput. 2023 May;61(5):991-1004. (PMID: 36639550)
Comput Med Imaging Graph. 2023 Apr;105:102186. (PMID: 36731328)
N Engl J Med. 2023 May 25;388(21):1981-1990. (PMID: 37224199)
Cancer Res. 2017 Nov 1;77(21):e104-e107. (PMID: 29092951)
J Nucl Med. 2020 Apr;61(4):488-495. (PMID: 32060219)
Comput Biol Med. 2022 Jan;140:105067. (PMID: 34920364)
Abdom Radiol (NY). 2022 Jan;47(1):56-65. (PMID: 34673995)
- Grant Information:
2023CAMCHS003A17 Chinese Association for Maternal and Child Health Studies; ZR2024MH223 Natural Science Foundation of Shandong Province
- Contributed Indexing:
Keywords: Bone suppression; Chest X-ray; Deep learning; Neonatal respiratory distress syndrome; Radiomics
- Publication Date:
Date Created: 20250205 Date Completed: 20250205 Latest Revision: 20250208
- Publication Date:
20250208
- Accession Number:
PMC11799334
- Accession Number:
10.1038/s41598-025-88982-6
- Accession Number:
39910276
No Comments.