References: Steliarova-Foucher, E. et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 18, 719–731 (2017). (PMID: 28410997546137010.1016/S1470-2045(17)30186-9)
Whittle, S. B. et al. Overview and recent advances in the treatment of neuroblastoma. Expert Rev. Anticancer Ther. 17, 369–386 (2017). (PMID: 2814228710.1080/14737140.2017.1285230)
Cone, E. B. et al. Biomarkers for Wilms tumor: A systematic review. J. Urol. 196, 1530–1535 (2016). (PMID: 27259655506912010.1016/j.juro.2016.05.100)
Fu, X. L. et al. Incidence of suicide mortality among childhood cancer survivors: A population-based retrospective study. Psychiatry Res. 304, 114119 (2021). (PMID: 3432518910.1016/j.psychres.2021.114119)
Vermeulen, J. et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol. 10, 663–671 (2009). (PMID: 19515614304507910.1016/S1470-2045(09)70154-8)
Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018). (PMID: 29686425599882210.1038/s41591-018-0014-x)
Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 39, 845–865e7 (2021). (PMID: 3401980610.1016/j.ccell.2021.04.014)
Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl. J. Med. 363, 1324–1334 (2010). (PMID: 20879881308662910.1056/NEJMoa0911123)
Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018). (PMID: 2948975410.1038/nature25480)
Wölfl, M. et al. Expression of MHC class I, MHC class II, and cancer germline antigens in neuroblastoma. Cancer Immunol. Immunother CII. 54, 400–406 (2005). (PMID: 1544903910.1007/s00262-004-0603-z)
Wienke, J. et al. The immune landscape of neuroblastoma: challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur. J. Cancer Oxf. Engl. 1990. 144, 123–150 (2021).
Pei, M. et al. The transcription factor TOX is involved in the regulation of T-cell exhaustion in neuroblastoma. Immunol. Lett. 248, 16–25 (2022). (PMID: 3569141010.1016/j.imlet.2022.06.004)
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011). (PMID: 2173967210.1038/ni.2035)
Kurachi, M. CD8 + T cell exhaustion. Semin Immunopathol. 41, 327–337 (2019). (PMID: 3098932110.1007/s00281-019-00744-5)
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019). (PMID: 31570879728644110.1038/s41577-019-0221-9)
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 26205583488900910.1038/nri3862)
Zhang, Z. et al. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 83, 104207 (2022). (PMID: 35961204938226310.1016/j.ebiom.2022.104207)
Wang, Q., Qin, Y. & Li, B. CD8 + T cell exhaustion and cancer immunotherapy. Cancer Lett. 559, 216043 (2023). (PMID: 3658493510.1016/j.canlet.2022.216043)
Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021). (PMID: 3381112510.1158/2159-8290.CD-20-1808)
Jin, M. Z. & Jin, W. L. The updated landscape of tumor microenvironment and drug repurposing. Signal. Transduct. Target. Ther. 5, 166 (2020). (PMID: 32843638744764210.1038/s41392-020-00280-x)
Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021). (PMID: 3491449910.1126/science.abe6474)
Wei, J. S. et al. Clinically relevant cytotoxic immune cell signatures and clonal expansion of T-Cell receptors in High-Risk MYCN-Not-Amplified human neuroblastoma. Clin. Cancer Res. Off J. Am. Assoc. Cancer Res. 24, 5673–5684 (2018). (PMID: 10.1158/1078-0432.CCR-18-0599)
Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25, 214–221 (2013). (PMID: 23298609363615910.1016/j.coi.2012.12.003)
Brahmer, J. et al. Nivolumab versus docetaxel in advanced Squamous-Cell Non-Small-Cell lung Cancer. N Engl. J. Med. 373, 123–135 (2015). (PMID: 26028407468140010.1056/NEJMoa1504627)
Irwin, M. S. et al. Revised neuroblastoma risk classification system: A report from the children’s oncology group. J. Clin. Oncol. Off J. Am. Soc. Clin. Oncol. 39, 3229–3241 (2021). (PMID: 10.1200/JCO.21.00278)
Lian, C. et al. Identification of T-cell exhaustion-related genes and prediction of their immunotherapeutic role in lung adenocarcinoma. J. Cancer. 15, 2160–2178 (2024). (PMID: 384955031093728510.7150/jca.92839)
Wu, J., Li, L. & Cheng, Z. System analysis based on T-cell exhaustion-related genes identifies PTPRT as a promising diagnostic and prognostic biomarker for gastric cancer. Sci. Rep. 14, 21049 (2024). (PMID: 392518101138472810.1038/s41598-024-72135-2)
Qi, Q. et al. Targeted drug screening leveraging Senescence-Induced T-Cell exhaustion signatures in hepatocellular carcinoma. Int. J. Mol. Sci. 25, 11232 (2024). (PMID: 394570141150872810.3390/ijms252011232)
Hu, J. et al. Integrative analysis of multi-omics data for discovery of ferroptosis-related gene signature predicting immune activity in neuroblastoma. Front. Pharmacol. 14, 1162563 (2023). (PMID: 375214691037359710.3389/fphar.2023.1162563)
Tan, K., Wu, W., Zhu, K., Lu, L. & Lv, Z. Identification and characterization of a glucometabolic prognostic gene signature in neuroblastoma based on N6-methyladenosine eraser ALKBH5. J. Cancer. 13, 2105–2125 (2022). (PMID: 35517412906622210.7150/jca.69408)
Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008). (PMID: 1827803310.1038/nbt1385)
Qian, Y. et al. Sodium channel subunit SCNN1B suppresses gastric Cancer growth and metastasis via GRP78 degradation. Cancer Res. 77, 1968–1982 (2017). (PMID: 2820250910.1158/0008-5472.CAN-16-1595)
Qian, Y. et al. The sodium channel subunit SCNN1B suppresses colorectal cancer via suppression of active c-Raf and MAPK signaling cascade. Oncogene 42, 601–612 (2023). (PMID: 3656446810.1038/s41388-022-02576-4)
Li, J. et al. Identification of heterogeneous subtypes and a prognostic model for gliomas based on mitochondrial dysfunction and oxidative stress-related genes. Front. Immunol. 14, 1183475 (2023). (PMID: 373343541027243110.3389/fimmu.2023.1183475)
Rindi, G. et al. Peptide products of the neurotrophin-inducible gene Vgf are produced in human neuroendocrine cells from early development and increase in hyperplasia and neoplasia. J. Clin. Endocrinol. Metab. 92, 2811–2815 (2007). (PMID: 1744001410.1210/jc.2007-0035)
Matsumoto, T. et al. A new possible lung cancer marker: VGF detection from the conditioned medium of pulmonary large cell neuroendocrine carcinoma-derived cells using secretome analysis. Int. J. Biol. Markers. 24, 282–285 (2009). (PMID: 2008227210.1177/172460080902400411)
Annaratone, L. et al. Search for neuro-endocrine markers (chromogranin A, synaptophysin and VGF) in breast cancers. An integrated approach using immunohistochemistry and gene expression profiling. Endocr. Pathol. 25, 219–228 (2014). (PMID: 2427723210.1007/s12022-013-9277-4)
Laut, A. K. et al. CHD5 inhibits metastasis of neuroblastoma. Oncogene 41, 622–633 (2022). (PMID: 3478983910.1038/s41388-021-02081-0)
Sun, J. et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell. Int. 19, 264 (2019). (PMID: 31632198678801110.1186/s12935-019-0986-8)
Chen, E. B. et al. HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis. Aging 11, 7473–7491 (2019). (PMID: 31527303678200810.18632/aging.102254)
Shahid, M. et al. Downregulation of CENPF remodels prostate Cancer cells and alters cellular metabolism. Proteomics 19, e1900038 (2019). (PMID: 30957416663390010.1002/pmic.201900038)
Albino, D. et al. Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer 113, 1412–1422 (2008). (PMID: 1867124810.1002/cncr.23720)
No Comments.