Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Detection and Management of Geographic Atrophy Secondary to Age-Related Macular Degeneration Using Noninvasive Retinal Images and Artificial Intelligence: Systematic Review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: JMIR Publications Country of Publication: Canada NLM ID: 100959882 Publication Model: Electronic Cited Medium: Internet ISSN: 1438-8871 (Electronic) Linking ISSN: 14388871 NLM ISO Abbreviation: J Med Internet Res Subsets: MEDLINE
    • Publication Information:
      Publication: <2011- > : Toronto : JMIR Publications
      Original Publication: [Pittsburgh, PA? : s.n., 1999-
    • Subject Terms:
    • Abstract:
      Background: Geographic atrophy (GA), the endpoint of dry age-related macular degeneration (AMD), is irreversible. The recent approval by the Food and Drug Administration of a complement component 3 inhibitor marks a significant breakthrough, highlighting the critical importance of early detection and management of GA. Consequently, there is an urgent and unmet need for efficient, accurate, and accessible methods to identify and monitor GA. Artificial intelligence (AI), particularly deep learning (DL), applied to noninvasive retinal imaging, offers a promising solution for automating and enhancing GA management.
      Objective: This systematic review aimed to assess the performance of AI using noninvasive imaging modalities and compare it with clinical expert assessment as the ground truth.
      Methods: Two consecutive searches were conducted on PubMed, Embase, Web of Science, Scopus, Cochrane Library, and CINAHL. The last search was performed on October 5, 2025. Studies using AI for GA secondary to dry AMD via noninvasive retinal imaging were included. Two authors worked in pairs to extract the study characteristics independently. A third author adjudicated disagreements. Quality Assessment of Diagnostic Accuracy Studies-AI and Prediction Model Risk of Bias Assessment Tool (PROBAST) were applied to evaluate the risk of bias and application.
      Results: Of the 803 records initially identified, 176 were found through an updated search. Subsequently, 200 papers were assessed in full text, of which 41 were included in the final analysis, 10 for GA detection, 20 for GA assessment and progression, and 11 for GA lesion prediction. The reviewed studies collectively involved at least 24,592 participants (detection: n=7132, assessment and progression: n=14,064, and prediction: n=6706), with a wide age range of 50 to 94 years. The studies spanned a diverse array of countries, including the United States, the United Kingdom, China, Austria, Australia, France, Israel, Italy, Switzerland, and Germany, as well as a multicenter study encompassing 7 European nations. The studies used a variety of imaging modalities to assess GA, including color fundus photography, fundus autofluorescence, near-infrared reflectance, spectral domain-optical coherence tomography (OCT), swept-source (SS)-OCT, and 3D-OCT. DL algorithms (eg, U-Net, ResNet50, EfficientNetB4, Xception, Inception v3, and PSC-UNet) consistently showed remarkable performance in GA detection and management tasks, with several studies achieving performance comparable to clinical experts.
      Conclusions: AI, particularly DL-based algorithms, holds considerable promise for the detection and management of GA secondary to dry AMD with performance comparable to ophthalmologists. This review innovatively consolidates evidence across GA management-from initial detection to progression prediction-using diverse noninvasive imaging. It has strong potential to augment clinical decision-making. However, to realize this potential in real-world settings, future research is needed to robustly enhance reporting specifications, ensure data diversity across populations and devices, and implement rigorous external validation in prospective, multicenter studies.
      (© Nannan Shi, Jiaxian Li, Mengqiu Shang, Weidao Zhang, Kai Xu, Yamin Li, Lina Liang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org).)
    • References:
      Ophthalmol Sci. 2024 Jun 19;4(6):100566. (PMID: 39139546)
      IEEE J Biomed Health Inform. 2020 Dec;24(12):3443-3455. (PMID: 32750923)
      Front Med (Lausanne). 2024 Oct 09;11:1438768. (PMID: 39444813)
      Sci Rep. 2021 Nov 8;11(1):21893. (PMID: 34751189)
      medRxiv. 2025 May 28;:. (PMID: 40492092)
      Transl Vis Sci Technol. 2025 Feb 03;14(2):11. (PMID: 39913124)
      JAMA. 2024 Jan 9;331(2):147-157. (PMID: 38193957)
      Retina. 2025 Dec 1;45(12):2311-2318. (PMID: 40694826)
      Syst Rev. 2021 Jan 26;10(1):39. (PMID: 33499930)
      J Pers Med. 2022 Dec 24;13(1):. (PMID: 36675697)
      Lancet. 2023 Oct 21;402(10411):1434-1448. (PMID: 37865470)
      Prog Retin Eye Res. 2014 Jan;38:20-42. (PMID: 24211245)
      Dtsch Arztebl Int. 2025 Feb 07;122(3):82-88. (PMID: 39836449)
      Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3556-64. (PMID: 16877429)
      Sci Rep. 2025 Feb 24;15(1):6535. (PMID: 39994280)
      Ophthalmol Sci. 2021 Jul 13;1(3):100038. (PMID: 36247813)
      Med Image Anal. 2021 Feb;68:101893. (PMID: 33260118)
      Transl Vis Sci Technol. 2021 Nov 1;10(13):18. (PMID: 34767623)
      Br J Ophthalmol. 2025 Sep 23;109(10):1187-1193. (PMID: 40490296)
      Eye Vis (Lond). 2024 May 6;11(1):17. (PMID: 38711111)
      Ophthalmology. 2019 Nov;126(11):1533-1540. (PMID: 31358385)
      Ophthalmol Sci. 2024 Jan 17;4(4):100466. (PMID: 38591046)
      Lancet. 2023 Oct 21;402(10411):1449-1458. (PMID: 37696275)
      Sci Rep. 2022 Oct 25;12(1):17870. (PMID: 36284220)
      BMJ. 2021 Mar 29;372:n71. (PMID: 33782057)
      JAMA. 2018 Jan 23;319(4):388-396. (PMID: 29362800)
      Am J Ophthalmol. 2021 Apr;224:321-331. (PMID: 33359715)
      Transl Vis Sci Technol. 2025 Feb 03;14(2):7. (PMID: 39908134)
      Ophthalmology. 2018 Apr;125(4):537-548. (PMID: 29103793)
      Front Med (Lausanne). 2023 Jul 19;10:1221453. (PMID: 37547613)
      Ann Intern Med. 2019 Jan 1;170(1):W1-W33. (PMID: 30596876)
      J Dent. 2022 Jul;122:104115. (PMID: 35367318)
      Transl Vis Sci Technol. 2023 Jul 3;12(7):10. (PMID: 37428131)
      Prog Retin Eye Res. 2024 Nov;103:101305. (PMID: 39343193)
      Comput Biol Med. 2021 Mar;130:104198. (PMID: 33383315)
      Transl Vis Sci Technol. 2021 Jul 1;10(8):2. (PMID: 34228106)
      Transl Vis Sci Technol. 2024 Aug 1;13(8):6. (PMID: 39102242)
      Ophthalmology. 2020 Jan;127(1):85-94. (PMID: 31281057)
      Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):42. (PMID: 39046755)
      Curr Opin Ophthalmol. 2023 May 1;34(3):195-202. (PMID: 36943458)
      Biomed Opt Express. 2022 Feb 07;13(3):1328-1343. (PMID: 35414972)
      Ophthalmol Sci. 2024 Oct 23;5(2):100635. (PMID: 39758130)
      Curr Opin Ophthalmol. 2024 Nov 1;35(6):455-462. (PMID: 39259599)
      Med Image Anal. 2021 Aug;72:102130. (PMID: 34198041)
      Int J Ophthalmol. 2024 Mar 18;17(3):408-419. (PMID: 38721504)
      Radiol Artif Intell. 2020 Mar 25;2(2):e200029. (PMID: 33937821)
      Theranostics. 2025 Feb 18;15(8):3223-3233. (PMID: 40093903)
      Expert Rev Mol Diagn. 2023 Jun;23(6):485-494. (PMID: 37144908)
      Ophthalmol Retina. 2021 Sep;5(9):855-867. (PMID: 33348085)
      Ophthalmol Retina. 2023 Mar;7(3):243-252. (PMID: 36038116)
      JAMA Ophthalmol. 2023 Nov 1;141(11):1052-1061. (PMID: 37856139)
      Graefes Arch Clin Exp Ophthalmol. 2018 Nov;256(11):2053-2060. (PMID: 30091055)
      Nat Med. 2021 Oct;27(10):1663-1665. (PMID: 34635854)
      Ophthalmol Retina. 2022 Aug;6(8):676-683. (PMID: 35338026)
      Comput Biol Med. 2019 Feb;105:102-111. (PMID: 30605812)
      J Imaging. 2021 Aug 11;7(8):. (PMID: 34460779)
      Sci Rep. 2022 Dec 31;12(1):22620. (PMID: 36587062)
      Ophthalmol Retina. 2023 Feb;7(2):118-126. (PMID: 35995411)
      Ophthalmol Retina. 2023 Feb;7(2):127-141. (PMID: 35970318)
      Ophthalmol Sci. 2024 Jul 24;5(1):100587. (PMID: 39380882)
      Sci Rep. 2023 Apr 29;13(1):7028. (PMID: 37120456)
      Ophthalmology. 2025 Feb;132(2):181-193. (PMID: 39151755)
      NPJ Digit Med. 2021 Apr 7;4(1):65. (PMID: 33828217)
      Ophthalmol Sci. 2023 Nov 17;4(3):100428. (PMID: 38284101)
      Nat Med. 2025 Oct;31(10):3283-3289. (PMID: 40954311)
      Ophthalmol Retina. 2022 Nov;6(11):1009-1018. (PMID: 35667569)
      Ophthalmology. 2021 Apr;128(4):576-586. (PMID: 32882310)
      Med Clin North Am. 2021 May;105(3):473-491. (PMID: 33926642)
      IEEE Trans Med Imaging. 2022 Oct;41(10):2828-2847. (PMID: 35507621)
      Lancet Digit Health. 2021 Oct;3(10):e665-e675. (PMID: 34509423)
      Ophthalmol Sci. 2023 Apr 14;3(4):100311. (PMID: 37304045)
      BMJ Open Ophthalmol. 2023 Dec 6;8(1):. (PMID: 38057106)
      Transl Vis Sci Technol. 2024 Sep 3;13(9):11. (PMID: 39235402)
      Ophthalmol Retina. 2023 Jan;7(1):4-13. (PMID: 35948209)
      Ophthalmol Retina. 2025 May;9(5):421-430. (PMID: 39522752)
      Cochrane Database Syst Rev. 2024 Oct 17;10:CD015522. (PMID: 39417312)
    • Contributed Indexing:
      Keywords: artificial intelligence; dry age-related macular degeneration; geographic atrophy; noninvasive retinal images; systematic review
    • Publication Date:
      Date Created: 20251121 Date Completed: 20251121 Latest Revision: 20251124
    • Publication Date:
      20251124
    • Accession Number:
      PMC12637997
    • Accession Number:
      10.2196/81328
    • Accession Number:
      41270236