Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Tutor CoPilot: A Human-AI Approach for Scaling Real-Time Expertise. EdWorkingPaper No. 24-1054
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- Additional Information
- Availability:
Annenberg Institute for School Reform at Brown University. Brown University Box 1985, Providence, RI 02912. Tel: 401-863-7990; Fax: 401-863-1290; e-mail: AISR_Info@brown.edu; Web site: http://www.annenberginstitute.org
- Peer Reviewed:
N
- Source:
34
- Sponsoring Agency:
Smith Richardson Foundation
Arnold Ventures
- Education Level:
Elementary Education
Junior High Schools
Middle Schools
Secondary Education
Early Childhood Education
Grade 3
Primary Education
Grade 4
Intermediate Grades
Grade 5
Grade 6
Grade 7
Grade 8
- Subject Terms:
- Abstract:
Generative AI, particularly Language Models (LMs), has the potential to transform real-world domains with societal impact, particularly where access to experts is limited. For example, in education, training novice educators with expert guidance is important for effectiveness but expensive, creating significant barriers to improving education quality at scale. This challenge disproportionately hurts students from under-served communities, who stand to gain the most from high-quality education and are most likely to be taught by inexperienced educators. We introduce Tutor CoPilot, a novel Human-AI approach that leverages a model of expert thinking to provide expert-like guidance to tutors as they tutor. This study presents the first randomized controlled trial of a Human-AI system in live tutoring, involving 900 tutors and 1,800 K-12 students from historically under-served communities. Following a preregistered analysis plan, we find that students working on mathematics with tutors randomly assigned to have access to Tutor CoPilot are 4 percentage points (p.p.) more likely to master topics (p<0.01). Notably, students of lower-rated tutors experienced the greatest benefit, improving mastery by 9 p.p. relative to the control group. We find that Tutor CoPilot costs only $20 per-tutor annually, based on the tutors' usage during the study. We analyze 550,000+ messages using classifiers to identify pedagogical strategies, and find that tutors with access to Tutor CoPilot are more likely to use strategies that foster student understanding (e.g., asking guiding questions) and less likely to give away the answer to the student, aligning with high-quality teaching practices. Tutor interviews qualitatively highlight how Tutor CoPilot's guidance helps them to respond to student needs, though tutors flag common issues in Tutor CoPilot, such as generating suggestions that are not grade-level appropriate. Altogether, our study of Tutor CoPilot demonstrates how Human-AI systems can scale expertise in real-world domains, bridge gaps in skills and create a future where high-quality education is accessible to all students. [Additional funding provided by Accelerate.]
- Abstract:
As Provided
- Publication Date:
2024
- Accession Number:
ED661562
No Comments.