Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Phonon Heat Transport and Photon-phonon Interaction in Nanostructures

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Institut Charles Delaunay (ICD); Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS); Université de Technologie de Troyes; Gilles Lérondel; Michel Kazan; Malek Tabbal
    • Publication Information:
      HAL CCSD, 2018.
    • Publication Date:
      2018
    • Abstract:
      Cette thèse avait pour cadre, le contrôle du transport thermique via les phonons et leur interaction avec des photons dans des nanostructures. Le manuscrit comprend cinq chapitres. Dans le premier, nous introduisons la physique des phonons et excitations élémentaires optiques de la matière. Le deuxième chapitre fournit une description des procédés de croissance, techniques de structuration et techniques de caractérisation utilisées. Dans le troisième chapitre, nous démontrons qu’à la fois, phonons et photons peuvent être confinés et interagir dans une même nanostructure. Dans le quatrième chapitre, nous montrons expérimentalement que le spectre de phonons d'un matériau peut être modifié par des mécanismes d'hybridation entre des modes de surface introduits par une nanostructuration et les modes normaux du matériau massif. Nous montrons que la forme et la taille des nanostructures sur la surface du matériau ont des effets sur le spectre de phonons du substrat. Dans le cinquième chapitre, nous montrons qu'à basse température (inférieure à 4 K), la chaleur spécifique des nanofils est équivalente à celle d'un cristal essentiellement bidimensionnel. Encore plus étonnant à l'interface entre les nanofils et le substrat, nous avons mis en évidence une transition entre une transmission élastique spéculaire et une transmission élastique diffuse. Lorsque la température augmente on observe alors une transition entre une diffusion élastique et une diffusion inélastique. L’ensemble de ces résultats laisse entrevoir des perspectives intéressantes pour le contrôle des propriétés thermiques de matériaux massifs par nanostructuration de surface
      In this dissertation, we investigate phonon heat transport and phonon interaction with optical elementary excitations in nanostructures. In the first chapter, we present an introduction to the physics of phonons and optical elementary excitations in nanostructured materials. The second chapter provides a detailed description of the samples growth and fabrication procedures and the various characterization techniques used. In the third chapter, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. In the fourth chapter, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. We demonstrate that the phonon spectrum of a bulk material can be altered by hybridization between confined phonon modes in nanostructures introduced on the surface of the material and the underlying bulk phonon modes. Shape and size of the nanostructures made on the surface of the substrate have strong effects on the phonon spectrum of the bulk material itself. In the fifth chapter, we demonstrate that at low temperatures (below 4 K) the nanowire specific heat exhibits a clear contribution from an essentially two-dimensional crystal. We also demonstrate that transitions from specular to diffusive elastic transmission and then from diffusive elastic to diffusive inelastic transmission occur at the interface between nanowires and a bulk substrate as temperature increases. Perspectives include the control of bulk material thermal properties via surface nanostructuring
    • Accession Number:
      edsair.dedup.wf.002..6a6fbc659a6908071d9daff8ca82be0a