Abstract: In this paper, we propose a class of block coordinate proximal gradient (BCPG) methods for solving large-scale nonsmooth separable optimization problems. The proposed BCPG methods are based on the Bregman functions, which may vary at each iteration. These methods include many well-known optimization methods, such as the quasi-Newton method, the block coordinate descent method, and the proximal point method. For the proposed methods, we establish their global convergence properties when the blocks are selected by the Gauss---Seidel rule. Further, under some additional appropriate assumptions, we show that the convergence rate of the proposed methods is R-linear. We also present numerical results for a new BCPG method with variable kernels for a convex problem with separable simplex constraints.
No Comments.