Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Elaboration and characterization of molybdenum titanium tungsto-phosphate towards the decontamination of radioactive liquid waste from 137 Cs and 85Sr

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Springer Science and Business Media LLC, 2023.
    • Publication Date:
      2023
    • Abstract:
      The crystalline phase of molybdenum titanium tungsto-phosphate (MoTiWPO4) as an inorganic sorbent material was synthesized via the sol–gel method. The physicochemical characteristics of MoTiWPO4 were evaluated by using Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy dispersive X-ray (EDX), thermal analysis (TGA-DTA), and X-ray diffraction (XRD). MoTiWPO4 sorbent material exhibits a high chemical resistance to HNO3, HCl, and alkaline media. MoTiWPO4 has good thermal stability as it retained about 75.63% of its saturation capacity upon heating at 500 °C. The sorption studies for several metal ions revealed marked high sorption efficiency of MoTiWPO4 towards Cs+ and Sr2+ ions which reached 99% and 95%, respectively. The saturation capacity of MoTiWPO4 for Cs+ and Sr2+ is 113 and 109 mg/g, respectively. MoTiWPO4 is approved to be successfully eliminating both 137Cs and 85Sr from liquid radioactive waste streams by %eff. of 92.5 and 90.3, respectively, in the presence of competing ions from 60Co(divalent) and 152Eu (trivalent), confirming the batch experiment results for the removal of Cs+ and Sr2+ metal ions. Furthermore, the decontamination factor exceeds 13.3 in the case of 137Cs and 10.3 for 85Sr.
    • ISSN:
      1614-7499
    • Accession Number:
      10.1007/s11356-023-31104-4
    • Rights:
      CC BY
      URL: http://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (http://creativecommons.org/licenses/by/4.0/) .
    • Accession Number:
      edsair.doi.dedup.....04f4a3b97709a3095af5882ecc4489f9